css打印分页

一、打印方法:

一般打印web使用的是window.print()方法,当然也可使用vue-print

二、参数介绍:

@page中一般设置打印的页头页脚打印方向等,示例:

size:打印信息,打印纸张类型(A4)亦或控制打印方向,portrait: 纵向打印地, landscape: 横向。

@page{

margin: 4mm 14mm 4mm 4mm;

size:A4 landscape;

}

@media print 设置css中可以查看打印样式,示例:

media print {

}

可以将打印和页面的部分分离,需要注意的是需要打印的部分用“包含css样式再赋予函数,注意不是引号。然后抛出引入展示页面中,放在data的return {}下就行了。

三、分页:

分页的话使用的css样式一般是page-break-before与page-break-after这两个,对应的是打印前分页与打印后分页。

page-break-before 在元素前分页

page-break-after 在元素后分页

page-break-inside 元素内部分页

打印属性可以控制分页方向,可以设定4种设定值:auto、always、left和right。其中Auto是默认值,只有在有需要时,才需设定分页符号,以page-break-after示例:

page-break-after:auto; 默认值

page-break-after:always; 新分页在元素下方

page-break-after:left; 新分页在元素下方

page-break-after:right; 新分页在元素下方

注意:

1.分页的元素必须是个可展示的块级元素,为求保险最好加上display: block;

2.元素内分页我试过,不怎么管用,所有还是用page-break-after比较好,要循环中分页的建议加个判断,然后再设置分页,再添加新的table元素,在该table元素中复制这个循环同样加上判断展示分页后的内容

3.建议分页元素放在两个table元素之间,分页后的table元素设置margin-top,如果不起左右就在元素属性style上设置
————————————————
版权声明:本文为CSDN博主「qq_35491739」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_35491739/article/details/126279510

正则表达式“正向匹配和反向匹配”的妙用

相信大家在看正则表达式语法的时候都会遇到下面几种:正向肯定,正向否定,反向肯定,反向否定

1、(?=pattern)

正向肯定预查,在任何匹配pattern的字符串开始处匹配查找字符串。

这是一个非获取匹配,该匹配不需要获取供以后使用。

例如,“Windows(?=95|98|NT|2000)”能匹配“Windows2000”中的“Windows”,

但不能匹配“Windows3.1”中的“Windows”。

预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,

而不是从包含预查的字符之后开始。

2、(?!pattern)

正向否定预查,在任何不匹配pattern的字符串开始处匹配查找字符串。

这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。

例如“Windows(?!95|98|NT|2000)”能匹配“Windows3.1”中的“Windows”,

但不能匹配“Windows2000”中的“Windows”。

3、(?<=pattern)

反向肯定预查,与正向肯定预查类似,只是方向相反。

例如,“(?<=95|98|NT|2000)Windows”能匹配“2000Windows”中的“Windows”,

但不能匹配“3.1Windows”中的“Windows”。

4、(?<!pattern)

反向否定预查,与正向否定预查类似,只是方向相反。

例如“(?<!95|98|NT|2000)Windows”能匹配“3.1Windows”中的“Windows”,

但不能匹配“2000Windows”中的“Windows”。

我第一次看的时候就觉得很难理解,读了两遍好不容易理解了,但是一直用不上,直到工作需要……………

str = “111/;hkakdhaldladhl;gddhkshls;hhhh”
用 ; 切割字符串,要求切割结果是111/;hkakdhaldladhl gddhkshls hhhh,也就是第一个;前面有/,所以第一个;不分割,只分割后面的;

这其实就用到了反向否定,将python里面的split函数和正则表达式完美结合在一起,大家根据我的例子再去理解正(反)向否(肯)定匹配,肯定就更清晰了
python代码实现:

import re

str = “111/;hkakdhaldladhl;gddhkshls;hhhh”
str_list = re.split(r”(?<!\/);”,str)
print(str_list)
结果:

注:?<! 是反向否定的意思, \/ 是对 / 做了转义

为了能记得住,我总结了下面的规律,供参考~~

“肯定” 就是出现在?<! ?<= ?! ?= 后面那些字符,我们要匹配的字符串带这个才去匹配

“否定”就是出现在?<! ?<= ?! ?= 后面那些字符,我们要匹配的字符串不带这个才去匹配

“正反向”就是例子里面windows在 ?<! ?<= ?! ?= 以及后面字符的前面还是后面,windows在后是反向,在前是正向

记起来就是,四种都要带? 肯定的是= 否定的是! 如果是反向就加上<

YII2 where查询条件整理

本文转自:https://www.yiichina.com/tutorial/1405

官方文档:http://www.yiichina.com/doc/guide/2.0/db-query-builder

文章涉及where、 addParams 、filterWhere 、andWhere、orWhere、 andFilterWhere()、 orFilterWhere()、andFilterCompare()
但是格式是一样的

字符串格式,例如:'status=1'
哈希格式,例如: ['status' => 1, 'type' => 2]
操作符格式,例如:['like', 'name', 'test']

字符串和哈希格式很好理解,我们来看看操作符格式,因为操作符格式可以组成相对复杂的查询语句
最简单的就是官方给的例子

$status = 10;
$search = 'yii';

$query->where(['status' => $status]);

if (!empty($search)) {
    $query->andWhere(['like', 'title', $search]);
}
生成的语句就是
... WHERE (`status` = 10) AND (`title` LIKE '%yii%')

操作符格式

[操作符, 操作数1, 操作数2, ...]
0cb4d39e-418f-4183-a900-8a4ab5b1aadf.png

第一个参数是操作符
操作符包括and、or、 like、in、 between等
第二个第三个都是操作数

第一种最简单的就是上面提到的例子
 andWhere(['like', 'title','搜索的标题']);
生成的语句
... WHERE (`status` = 10) AND (`title` LIKE '%yii%')
第二种
addWhere(['and', 'id=1', 'name=2']);
生成的语句
... WHERE id=1 AND name=2
第三种
addWhere(['and', 'type=1', ['or', 'id=1', 'id=2']]);
生成的语句
... WHERE type=1 AND (id=1 OR id=2);
第四种
->andWhere(['or like','name',['哈哈','苦苦']]);
生成的语句
 WHERE `name` LIKE '%哈哈%' OR `name` LIKE '%苦苦%';
 第五种
 addWhere(['or',['like','name','哈哈'],['like','title','苦苦']]);//操作符格式的嵌套
 生成的语句
... WHERE (`status`=1) AND ((`name` LIKE '%哈哈%') OR (`title` LIKE '%苦苦%'))

$query->andWhere(new Expression(‘FIND_IN_SET(‘1,size’)’));+
生成的语句
… WHERE id=1 AND FIND_IN_SET(1, size)
//size的值:1,2,3,4,5

yii2记数,自动累加

文章一般都有统计浏览次数的需求,一般小型项目的做法就是直接 update 数据库中的某个字段。在 Yii 中怎么实现呢?请往下看:

实现

方式一

Yii2 中有这个 updateAllCounters 静态方法,这种方式是最快并且最省事的实现方式,代码示例如下:

Topic::updateAllCounters(['view_count' => 1], ['id' => $id]);// 实现的效果就是 view_count + 1,1根据你的需求可以是正数也可以是负数。

如果你的条件比较复杂你可以这样写:

Topic::updateAllCounters(['view_count' => 1], ['and', ['xxx' => 0, 'yyy' => 2], ['>', 'zzz', $time]);

如果你现在的需求是:更新一个字段的值,一个字段的值 +1,你可以试着用这种方式去实现:

 Topic::updateAll(    ['view_count' => new Expression('`view_count` + 1'), 'updated_at' => time()],    ['id' => $id]);

PS:此处的 view_count 字段默认值切记不能设置为 null

Expression 是表达式的意思,可以实现更多特殊 SQL,想了解更多,可以去搜索一下文档。

方式二

当然你还可以这样去实现:

$model = Post::findOne($id);$model->updateCounters(['view_count' => 1]);

yii2 swift mailer 发送邮件不成功的问题

今天调试yii2自带的swift mailer发邮件,开始调试时,发送用的send()方法始终返回true,但是就是没有收到邮件,很是纳闷,于是开始了半个晚上的调试之旅,我把调试过程发出来,希望后面的小伙伴能少走一些弯路。
首先,根据热心网友的文章,配置邮箱的基础信息,我用的base项目,所以我的配置文件是web.php,配置内容为:
        ‘mailer’ => [
            ‘class’ => ‘yii\swiftmailer\Mailer’,
            ‘transport’ => [
                ‘class’ => ‘Swift_SmtpTransport’,
                ‘host’ => ‘smtp.163.com’,
                ‘username’ => ‘xxx@163.com’,
                ‘password’ => ‘xxx’,
                ‘port’ => ’25’,
                ‘encryption’ => ‘tls’,//    tls | ssl

            ],
            ‘messageConfig’=>[
                ‘charset’=>’UTF-8’,
                ‘from’=>[‘xxx@163.com’=>’admin’]
            ],
            ‘useFileTransport’ => false,
        ],
然后开始写了一个测试用的控制器,内容如下:
    public function actionMailer()
    {
        $mail= Yii::$app->mailer->compose();
        $mail->setTo(‘10000@qq.com’);
        $mail->setSubject(“Test title”);
        $mail->setTextBody(‘Test content’);
        //$mail->setHtmlBody(“Test HTML”);
        var_dump($mail->send());
    }
好了,信心满满的开始测试了,执行链接,满心欢喜的去查看QQ邮箱了,但是左等右等,前等后等,丫的就是没有,重新发送,还是没有,但是send()的返回值明明就是true!
 于是开始排错,总结了一下,出错的可能位置在以下几点:
 不同邮箱的host是不同的
如果是163邮箱,password是授权码
userFileTransport要设置成false,否则只会在runtime下生成缓存文件,不会真正发送
一一排查,确信没有错误,太奇怪了,于是我决定直接调用swiftmailer试一下,于是新建了下面的控制器:
    public function actionMailer2()
    {
        $mailer = new \yii\swiftmailer\Mailer();
        $mailer->transport=[
            ‘class’ => ‘Swift_SmtpTransport’,
            ‘host’ => ‘smtp.163.com’,
            ‘username’ => ‘xxxx@163.com’,
            ‘password’ => ‘xxxx’,
            ‘port’ => ’25’,
            ‘encryption’ => ‘tls’,//    tls | ssl
        ];
        $mailer->messageConfig=[
            ‘charset’=>’UTF-8’,
            ‘from’=>[‘xxxx@163.com’=>’admin’]
        ];
        $mailer->useFileTransport = false;
        $mail= $mailer->compose();
        $mail->setTo(‘10000@qq.com’);
        $mail->setSubject(“Test title”);
        $mail->setTextBody(‘Test content’);
        var_dump($mail->send());
    }

哎哟我去!发送成功了!这是为啥呢?首先证明这个类确是是可以发送邮件的了,那么下一步要细细的分析这两段代码区别在何处了。
我分别打印了两个类构造完成后的结果:
    public function actionMailer()
    {
        echo ‘<pre>’;
        var_dump(Yii::$app->mailer);
    }

    public function actionMailer2()
    {
        $mailer = new \yii\swiftmailer\Mailer();
        $mailer->transport=[
            ‘class’ => ‘Swift_SmtpTransport’,
            ‘host’ => ‘smtp.163.com’,
            ‘username’ => ‘xxxx@163.com’,
            ‘password’ => ‘xxxx’,
            ‘port’ => ’25’,
            ‘encryption’ => ‘tls’,//    tls | ssl
        ];
        $mailer->messageConfig=[
            ‘charset’=>’UTF-8’,
            ‘from’=>[‘xxxx@163.com’=>’admin’]
        ];
        $mailer->useFileTransport = false;
        echo ‘<pre>’;
        var_dump($mailer);
    }

在长长的内容中慢慢的对比,终于发现了端倪,
第一个方法中:[“useFileTransport”]=>bool(true)
第二个方法中:[“useFileTransport”]=>bool(false)
上面也说过了,useFileTransport必须设置成false才能发送成功,那问题总算是找到了,那为什么会出现这样的问题呢?我上面明明是设置过的,为什么没生效?难道是测试环境的原因吗?
我测试使用的url是http://goonwin.com/index-test.php?r=liyang/mailer,注意那个index-test.php,就是他的原因了,于是我把index-test.php改成index.php立马发送成功了,丫的,这么隐蔽一个坑啊!!!
但是我还是希望测试环境可以发送邮件的,于是,稍微改动了一下调用的方法:
    public function actionMailer()
    {
        $mail = Yii::$app->mailer;
        $mail->useFileTransport = false;
        $mail= $mail->compose();
        $mail->setTo(‘10000@qq.com’);
        $mail->setSubject(“Test title”);
        $mail->setTextBody(‘Test content’);
        var_dump($mail->send());
    }

Oh,终于可以发送了,看到论坛中有些朋友也在问同样的问题,估计现在你已经可以解决了。洋洋洒洒写了这么多,其实就一个目的,希望能给新手一点调试的经验吧,老手你当然乐呵乐呵就得了。
浪费一晚上青春,睡觉!

window 安装composer (package not found)

打开 php 的 openssl 扩展。
浏览器访问:getcomposer.org/installer, 进入安装程序。
安装完后,composer -v 查看版本。
换镜像: composer config -g repo.packagist composer https://mirrors.aliyun.com/composer/

MathPHP

Powerful Modern Math Library for PHP

MathPHP is the only library you need to integrate mathematical functions into your applications. It is a self-contained library in pure PHP with no external dependencies.

It is actively under development with development (0.y.z) releases.

Coverage Status
Build Status
License

Features

Setup

Add the library to your composer.json file in your project:

{
  "require": {
      "markrogoyski/math-php": "0.*"
  }
}

Use composer to install the library:

$ php composer.phar install

Composer will install MathPHP inside your vendor folder. Then you can add the following to your .php files to use the library with Autoloading.

require_once(__DIR__ . '/vendor/autoload.php');

Alternatively, use composer on the command line to require and install MathPHP:

$ php composer.phar require markrogoyski/math-php:0.*

Minimum Requirements

  • PHP 7

Usage

Algebra

use MathPHP\Algebra;

// Greatest common divisor (GCD)
$gcd = Algebra::gcd(8, 12);

// Extended greatest common divisor - gcd(a, b) = a*a' + b*b'
$gcd = Algebra::extendedGcd(12, 8); // returns array [gcd, a', b']

// Least common multiple (LCM)
$lcm = Algebra::lcm(5, 2);

// Factors of an integer
$factors = Algebra::factors(12); // returns [1, 2, 3, 4, 6, 12]

// Quadradic equation
list($a, $b, $c) = [1, 2, -8]; // x² + 2x - 8
list($x₁, $x₂)   = Algebra::quadradic($a, $b, $c);

// Cubic equation
list($a₃, $a₂, $a₁, $a₀) = [2, 9, 3, -4]; // 2x³ + 9x² + 3x -4
list($x₁, $x₂, $x₃)      = Algebra::cubic($a₃, $a₂, $a₁, $a₀);

// Quartic equation
list($a₄, $a₃, $a₂, $a₁, $a₀) = [1, -10, 35, -50, 24]; // z⁴ - 10z³ + 35z² - 50z + 24 = 0
list($z₁, $z₂, $z₃, $z₄)      = Algebra::quartic($a₄, $a₃, $a₂, $a₁, $a₀);

Arithmetic

use MathPHP\Arithmetic;

$³√x = Arithmetic::cubeRoot(-8); // -2

// Sum of digits
$digit_sum    = Arithmetic::digitSum(99):    // 18
$digital_root = Arithmetic::digitalRoot(99); // 9

// Equality of numbers within a tolerance
$x = 0.00000003458;
$y = 0.00000003455;
$ε = 0.0000000001;
$almostEqual = Arithmetic::almostEqual($x, $y, $ε); // true

// Copy sign
$magnitude = 5;
$sign      = -3;
$signed_magnitude = Arithmetic::copySign($magnitude, $sign); // -5

Finance

use MathPHP\Finance;

// Financial payment for a loan or annuity with compound interest
$rate          = 0.035 / 12; // 3.5% interest paid at the end of every month
$periods       = 30 * 12;    // 30-year mortgage
$present_value = 265000;     // Mortgage note of $265,000.00
$future_value  = 0;
$beginning     = false;      // Adjust the payment to the beginning or end of the period
$pmt           = Finance::pmt($rate, $periods, $present_value, $future_value, $beginning);

// Interest on a financial payment for a loan or annuity with compound interest.
$period = 1; // First payment period
$ipmt   = Finance::ipmt($rate, $period, $periods, $present_value, $future_value, $beginning);

// Principle on a financial payment for a loan or annuity with compound interest
$ppmt = Finance::ppmt($rate, $period, $periods, $present_value, $future_value = 0, $beginning);

// Number of payment periods of an annuity.
$periods = Finance::periods($rate, $payment, $present_value, $future_value, $beginning);

// Annual Equivalent Rate (AER) of an annual percentage rate (APR)
$nominal = 0.035; // APR 3.5% interest
$periods = 12;    // Compounded monthly
$aer     = Finance::aer($nominal, $periods);

// Annual nominal rate of an annual effective rate (AER)
$nomial = Finance::nominal($aer, $periods);

// Future value for a loan or annuity with compound interest
$payment = 1189.97;
$fv      = Finance::fv($rate, $periods, $payment, $present_value, $beginning)

// Present value for a loan or annuity with compound interest
$pv = Finance::pv($rate, $periods, $payment, $future_value, $beginning)

// Net present value of cash flows
$values = [-1000, 100, 200, 300, 400];
$npv    = Finance::npv($rate, $values);

// Interest rate per period of an annuity
$beginning = false; // Adjust the payment to the beginning or end of the period
$rate      = rate($periods, $payment, $present_value, $future_value, $beginning);

// Internal rate of return
$values = [-100, 50, 40, 30];
$irr    = Finance:irr($values); // Rate of return of an initial investment of $100 with returns of $50, $40, and $30

// Modified internal rate of return
$finance_rate      = 0.05; // 5% financing
$reinvestment_rate = 0.10; // reinvested at 10%
$mirr              = Finance:mirr($values, $finance_rate); // rate of return of an initial investment of $100 at 5% financing with returns of $50, $40, and $30 reinvested at 10%

// Discounted payback of an investment
$values  = [-1000, 100, 200, 300, 400, 500];
$rate    = 0.1;
$payback = Finance::payback($values, $rate); // The payback period of an investment with a $1,000 investment and future returns of $100, $200, $300, $400, $500 and a discount rate of 0.10

// Profitability index
$values              = [-100, 50, 50, 50];
$profitability_index = profitabilityIndex($values, $rate); // The profitability index of an initial $100 investment with future returns of $50, $50, $50 with a 10% discount rate

Functions – Map – Single Array

use MathPHP\Functions\Map;

$x = [1, 2, 3, 4];

$sums        = Map\Single::add($x, 2);      // [3, 4, 5, 6]
$differences = Map\Single::subtract($x, 1); // [0, 1, 2, 3]
$products    = Map\Single::multiply($x, 5); // [5, 10, 15, 20]
$quotients   = Map\Single::divide($x, 2);   // [0.5, 1, 1.5, 2]
$x²          = Map\Single::square($x);      // [1, 4, 9, 16]
$x³          = Map\Single::cube($x);        // [1, 8, 27, 64]
$x⁴          = Map\Single::pow($x, 4);      // [1, 16, 81, 256]
$√x          = Map\Single::sqrt($x);        // [1, 1.414, 1.732, 2]
$∣x∣         = Map\Single::abs($x);         // [1, 2, 3, 4]
$maxes       = Map\Single::max($x, 3);      // [3, 3, 3, 4]
$mins        = Map\Single::min($x, 3);      // [1, 2, 3, 3]

Functions – Map – Multiple Arrays

use MathPHP\Functions\Map;

$x = [10, 10, 10, 10];
$y = [1,   2,  5, 10];

// Map function against elements of two or more arrays, item by item (by item ...)
$sums        = Map\Multi::add($x, $y);      // [11, 12, 15, 20]
$differences = Map\Multi::subtract($x, $y); // [9, 8, 5, 0]
$products    = Map\Multi::multiply($x, $y); // [10, 20, 50, 100]
$quotients   = Map\Multi::divide($x, $y);   // [10, 5, 2, 1]
$maxes       = Map\Multi::max($x, $y);      // [10, 10, 10, 10]
$mins        = Map\Multi::mins($x, $y);     // [1, 2, 5, 10]

// All functions work on multiple arrays; not limited to just two
$x    = [10, 10, 10, 10];
$y    = [1,   2,  5, 10];
$z    = [4,   5,  6,  7];
$sums = Map\Multi::add($x, $y, $z); // [15, 17, 21, 27]

Functions – Special Functions

use MathPHP\Functions\Special;

// Gamma function Γ(z)
$z = 4;
$Γ = Special::gamma($z);          // Uses gamma definition for integers and half integers; uses Lanczos approximation for real numbers
$Γ = Special::gammaLanczos($z);   // Lanczos approximation
$Γ = Special::gammaStirling($z);  // Stirling approximation

// Incomplete gamma functions - γ(s,t), Γ(s,x)
list($x, $s) = [1, 2];
$γ = Special::lowerIncompleteGamma($x, $s); // same as γ
$γ = Special::γ($x, $s);                    // same as lowerIncompleteGamma
$Γ = Special::upperIncompleteGamma($x, $s);

// Beta function
list($x, $y) = [1, 2];
$β = Special::beta($x, $y); // same as β
$β = Special::β($x, $y);    // same as beta

// Incomplete beta functions
list($x, $a, $b) = [0.4, 2, 3];
$B  = Special::incompleteBeta($x, $a, $b);
$Iₓ = Special::regularizedIncompleteBeta($x, $a, $b);

// Multivariate beta function
$αs = [1, 2, 3];
$β  = Special::multivariateBeta($αs);

// Error function (Gauss error function)
$error = Special::errorFunction(2);              // same as erf
$error = Special::erf(2);                        // same as errorFunction
$error = Special::complementaryErrorFunction(2); // same as erfc
$error = Special::erfc(2);                       // same as complementaryErrorFunction

// Hypergeometric functions
$pFq = Special::generalizedHypergeometric($p, $q, $a, $b, $c, $z);
$₁F₁ = Special::confluentHypergeometric($a, $b, $z);
$₂F₁ = Special::hypergeometric($a, $b, $c, $z);

// Sign function (also known as signum or sgn)
$x    = 4;
$sign = Special::signum($x); // same as sgn
$sign = Special::sgn($x);    // same as signum

// Logistic function (logistic sigmoid function)
$x₀ = 2; // x-value of the sigmoid's midpoint
$L  = 3; // the curve's maximum value
$k  = 4; // the steepness of the curve
$x  = 5;
$logistic = Special::logistic($x₀, $L, $k, $x);

// Sigmoid function
$t = 2;
$sigmoid = Special::sigmoid($t);

// Softmax function
$?    = [1, 2, 3, 4, 1, 2, 3];
$σ⟮?⟯ⱼ = Special::softmax($?);

Information Theory – Entropy

use MathPHP\InformationTheory\Entropy;

// Probability distributions
$p = [0.2, 0.5, 0.3];
$q = [0.1, 0.4, 0.5];

// Shannon entropy
$bits  = Entropy::shannonEntropy($p);         // log₂
$nats  = Entropy::shannonNatEntropy($p);      // ln
$harts = Entropy::shannonHartleyEntropy($p);  // log₁₀

// Cross entropy
$H⟮p、q⟯ = Entropy::crossEntropy($p, $q);       // log₂

// Joint entropy
$P⟮x、y⟯ = [1/2, 1/4, 1/4, 0];
H⟮x、y⟯ = Entropy::jointEntropy($P⟮x、y⟯);        // log₂

// Rényi entropy
$α    = 0.5;
$Hₐ⟮X⟯ = Entropy::renyiEntropy($p, $α);         // log₂

// Perplexity
$perplexity = Entropy::perplexity($p);         // log₂

Linear Algebra – Matrix

use MathPHP\LinearAlgebra\Matrix;
use MathPHP\LinearAlgebra\MatrixFactory;

$matrix = [
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9],
];

// Matrix factory creates most appropriate matrix
$A = MatrixFactory::create($matrix);
$B = MatrixFactory::create($matrix);

// Matrix factory can create a matrix from an array of column vectors
use MathPHP\LinearAlgebra\Vector;
$X₁ = new Vector([1, 4, 7]);
$X₂ = new Vector([2, 5, 8]);
$X₃ = new Vector([3, 6, 9]);
$C  = MatrixFactory::create([$X₁, $X₂, $X₃]);

// Can also directly instantiate desired matrix class
$A = new Matrix($matrix);
$B = new SquareMatrix($matrix);

// Basic matrix data
$array = $A->getMatrix();
$rows  = $A->getM();      // number of rows
$cols  = $A->getN();      // number of columns

// Basic matrix elements (zero-based indexing)
$row = $A->getRow(2);
$col = $A->getColumn(2);
$Aᵢⱼ = $A->get(2, 2);
$Aᵢⱼ = $A[2][2];

// Other representations of matrix data
$vectors = $A->asVectors();                // array of column vectors
$D       = $A->getDiagonalElements();      // array of the diagonal elements
$d       = $A->getSuperdiagonalElements(); // array of the superdiagonal elements
$d       = $A->getSubdiagonalElements();   // array of the subdiagonal elements

// Row operations
list($mᵢ, $mⱼ, $k) = [1, 2, 5];
$R = $A->rowInterchange($mᵢ, $mⱼ);
$R = $A->rowMultiply($mᵢ, $k);     // Multiply row mᵢ by k
$R = $A->rowAdd($mᵢ, $mⱼ, $k);     // Add k * row mᵢ to row mⱼ
$R = $A->rowExclude($mᵢ);          // Exclude row $mᵢ

// Column operations
list($nᵢ, $nⱼ, $k) = [1, 2, 5];
$R = $A->columnInterchange($nᵢ, $nⱼ);
$R = $A->columnMultiply($nᵢ, $k);     // Multiply column nᵢ by k
$R = $A->columnAdd($nᵢ, $nⱼ, $k);     // Add k * column nᵢ to column nⱼ
$R = $A->columnExclude($nᵢ);          // Exclude column $nᵢ

// Matrix operations - return a new Matrix
$A+B  = $A->add($B);
$A⊕B   = $A->directSum($B);
$A⊕B   = $A->kroneckerSum($B);
$A−B   = $A->subtract($B);
$AB    = $A->multiply($B);
$2A   = $A->scalarMultiply(2);
$A/2  = $A->scalarDivide(2);
$−A    = $A->negate();
$A∘B   = $A->hadamardProduct($B);
$A⊗B   = $A->kroneckerProduct($B);
$Aᵀ   = $A->transpose();
$D    = $A->diagonal();
$⟮A∣B⟯  = $A->augment($B);
$⟮A∣I⟯  = $A->augmentIdentity();         // Augment with the identity matrix
$⟮A∣B⟯  = $A->augmentBelow($B);
$A⁻¹   = $A->inverse();
$Mᵢⱼ   = $A->minorMatrix($mᵢ, $nⱼ);     // Square matrix with row mᵢ and column nⱼ removed
$Mk    = $A->leadingPrincipalMinor($k); // kᵗʰ-order leading principal minor
$CM    = $A->cofactorMatrix();
$B     = $A->meanDeviation();
$S     = $A->covarianceMatrix();
$adj⟮A⟯ = $A->adjugate();

// Matrix operations - return a new Vector
$AB = $A->vectorMultiply($X₁);
$M  = $A->sampleMean();

// Matrix operations - return a value
$tr⟮A⟯   = $A->trace();
$|A|    = $a->det();              // Determinant
$Mᵢⱼ    = $A->minor($mᵢ, $nⱼ);    // First minor
$Cᵢⱼ    = $A->cofactor($mᵢ, $nⱼ);
$rank⟮A⟯ = $A->rank();

// Matrix norms - return a value
$‖A‖₁ = $A->oneNorm();
$‖A‖F = $A->frobeniusNorm(); // Hilbert–Schmidt norm
$‖A‖∞ = $A->infinityNorm();
$max  = $A->maxNorm();

// Matrix properties - return a bool
$bool = $A->isSquare();
$bool = $A->isSymmetric();
$bool = $A->isSkewSymmetric();
$bool = $A->isSingular();
$bool = $A->isNonsingular();           // Same as isInvertible
$bool = $A->isInvertible();            // Same as isNonsingular
$bool = $A->isPositiveDefinite();
$bool = $A->isPositiveSemidefinite();
$bool = $A->isNegativeDefinite();
$bool = $A->isNegativeSemidefinite();
$bool = $A->isLowerTriangular();
$bool = $A->isUpperTriangular();
$bool = $A->isTriangular();
$bool = $A->isDiagonal();
$bool = $A->isUpperBidiagonal();
$bool = $A->isLowerBidiagonal();
$bool = $A->isBidiagonal();
$bool = $A->isTridiagonal();
$bool = $A->isUpperHessenberg();
$bool = $A->isLowerHessenberg();
$bool = $A->isInvolutory();
$bool = $A->isSignature();
$bool = $A->isRef();
$bool = $A->isRref();

// Matrix decompositions
$ref  = $A->ref();                   // Row echelon form
$rref = $A->rref();                  // Reduced row echelon form
$PLU  = $A->luDecomposition();       // Returns array of Matrices [L, U, P]; P is permutation matrix
$LU   = $A->croutDecomposition();    // Returns array of Matrices [L, U]
$L    = $A->choleskyDecomposition(); // Returns lower triangular matrix L of A = LLᵀ

// Solve a linear system of equations: Ax = b
$b = new Vector(1, 2, 3);
$x = $A->solve($b);

// Map a function over each element of the Matrix
$func = function($x) {
    return $x * 2;
};
$R = $A->map($func);

// Print a matrix
print($A);
/*
 [1, 2, 3]
 [2, 3, 4]
 [3, 4, 5]
 */

// Specialized matrices
list($m, $n, $k)              = [4, 4, 2];
$identity_matrix              = MatrixFactory::identity($n);             // Ones on the main diagonal
$zero_matrix                  = MatrixFactory::zero($m, $n);             // All zeros
$ones_matrix                  = MatrixFactory::one($m, $n);              // All ones
$eye_matrix                   = MatrixFactory::eye($m, $n, $k);          // Ones (or other value) on the k-th diagonal
$exchange_matrix              = MatrixFactory::exchange($n);             // Ones on the reverse diagonal
$downshift_permutation_matrix = MatrixFactory::downshiftPermutation($n); // Permutation matrix that pushes the components of a vector down one notch with wraparound
$upshift_permutation_matrix   = MatrixFactory::upshiftPermutation($n);   // Permutation matrix that pushes the components of a vector up one notch with wraparound
$hilbert_matrix               = MatrixFactory::hilbert($n);              // Square matrix with entries being the unit fractions

// Vandermonde matrix
$V = MatrixFactory::create([1, 2, 3], 4); // 4 x 3 Vandermonde matrix
$V = new VandermondeMatrix([1, 2, 3], 4); // Same as using MatrixFactory

// Diagonal matrix
$D = MatrixFactory::create([1, 2, 3]); // 3 x 3 diagonal matrix with zeros above and below the diagonal
$D = new DiagonalMatrix([1, 2, 3]);    // Same as using MatrixFactory

// PHP Predefined Interfaces
$json = json_encode($A); // JsonSerializable
$Aᵢⱼ  = $A[$mᵢ][$nⱼ];    // ArrayAccess

Linear Algebra – Vector

use MathPHP\LinearAlgebra\Vector;

// Vector
$A = new Vector([1, 2]);
$B = new Vector([2, 4]);

// Basic vector data
$array = $A->getVector();
$n     = $A->getN();           // number of elements
$M     = $A->asColumnMatrix(); // Vector as an nx1 matrix
$M     = $A->asRowMatrix();    // Vector as a 1xn matrix

// Basic vector elements (zero-based indexing)
$item = $A->get(1);

// Vector operations - return a value
$sum  = $A->sum();
$│A│  = $A->length();           // same as l2Norm
$A⋅B  = $A->dotProduct($B);     // same as innerProduct
$A⋅B  = $A->innerProduct($B);   // same as dotProduct
$A⊥⋅B = $A->perpDotProduct($B);

// Vector operations - return a Vector or Matrix
$kA    = $A->scalarMultiply($k);
$A+B  = $A->add($B);
$A−B   = $A->subtract($B);
$A/k  = $A->scalarDivide($k);
$A⨂B  = $A->outerProduct($B);  // Same as direct product
$AB    = $A->directProduct($B); // Same as outer product
$AxB   = $A->crossProduct($B);
$A⨂B   = $A->kroneckerProduct($B);
$Â     = $A->normalize();
$A⊥    = $A->perpendicular();
$projᵇA = $A->projection($B);   // projection of A onto B
$perpᵇA = $A->perp($B);         // perpendicular of A on B

// Vector norms - return a value
$l₁norm = $A->l1Norm();
$l²norm = $A->l2Norm();
$pnorm  = $A->pNorm();
$max    = $A->maxNorm();

// Print a vector
print($A); // [1, 2]

// PHP Predefined Interfaces
$n    = count($A);       // Countable
$json = json_encode($A); // JsonSerializable
$Aᵢ   = $A[$i];          // ArrayAccess

Number – Complex Numbers

use MathPHP\Number\Complex;

list($r, $i) = [2, 4];
$complex     = new Complex($r, $i);

// Accessors
$r = $complex->r;
$i = $complex->i;

// Unary functions
$conjugate     = $complex->complexConjugate();
$│c│           = $complex->abs();     // absolute value (modulus)
$arg⟮c⟯         = $complex->arg();     // argument (phase)
$√c            = $complex->sqrt();    // positive square root
list($z₁, $z₂) = $complex->roots();
$c⁻¹           = $complex->inverse();
$−c            = $complex->negate();
$polar         = $complex->polarForm();

// Binary functions
$c+c = $complex->add($complex);
$c−c  = $complex->subtract($complex);
$c×c  = $complex->multiply($complex);
$c/c = $complex->divide($complex);

// Other functions
$bool   = $complex->equals($complex);
$string = (string) $complex;

Number – Rational Numbers

use MathPHP\Number\Rational;

$whole       = 0;
$numerator   = 2;
$denominator = 3;

$rational = new Rational($whole, $numerator, $denominator); // ²/₃

// Unary functions
$│rational│ = $rational->abs();

// Binary functions
$sum      = $rational->add($rational);
$diff     = $rational->subtract($rational);
$product  = $rational->multiply($rational);
$quotient = $rational->divide($rational);

// Other functions
$bool   = $rational->equals($rational);
$float  = $rational->toFloat();
$string = (string) $rational;

Number Theory – Integers

use MathPHP\NumberTheory\Integer;

$n = 225;

// Prime factorization
$factors = Integer::primeFactorization($n);

// Perfect powers
$bool        = Integer::isPerfectPower($n);
list($m, $k) = Integer::perfectPower($n);

// Coprime
$bool = Integer::coprime(4, 35);

// Even and odd
$bool = Integer::isEven($n);
$bool = Integer::isOdd($n);

Numerical Analysis – Interpolation

use MathPHP\NumericalAnalysis\Interpolation;

// Interpolation is a method of constructing new data points with the range
// of a discrete set of known data points.
// Each integration method can take input in two ways:
// 1) As a set of points (inputs and outputs of a function)
// 2) As a callback function, and the number of function evaluations to
// perform on an interval between a start and end point.

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];

// Lagrange Polynomial
// Returns a function p(x) of x
$p = Interpolation\LagrangePolynomial::interpolate($points);                // input as a set of points
$p = Interpolation\LagrangePolynomial::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Nevilles Method
// More accurate than Lagrange Polynomial Interpolation given the same input
// Returns the evaluation of the interpolating polynomial at the $target point
$target = 2;
$result = Interpolation\NevillesMethod::interpolate($target, $points);                // input as a set of points
$result = Interpolation\NevillesMethod::interpolate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Newton Polynomial (Forward)
// Returns a function p(x) of x
$p = Interpolation\NewtonPolynomialForward::interpolate($points);                // input as a set of points
$p = Interpolation\NewtonPolynomialForward::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Natural Cubic Spline
// Returns a piecewise polynomial p(x)
$p = Interpolation\NaturalCubicSpline::interpolate($points);                // input as a set of points
$p = Interpolation\NaturalCubicSpline::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Clamped Cubic Spline
// Returns a piecewise polynomial p(x)

// Input as a set of points
$points = [[0, 1, 0], [1, 4, -1], [2, 9, 4], [3, 16, 0]];

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
$f’⟮x⟯ = function ($x) {
    return 2*$x + 2;
};
list($start, $end, $n) = [0, 3, 4];

$p = Interpolation\ClampedCubicSpline::interpolate($points);                // input as a set of points
$p = Interpolation\ClampedCubicSpline::interpolate($f⟮x⟯, $f’⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

Numerical Analysis – Numerical Differentiation

use MathPHP\NumericalAnalysis\NumericalDifferentiation;

// Numerical Differentiation approximates the derivative of a function.
// Each Differentiation method can take input in two ways:
// 1) As a set of points (inputs and outputs of a function)
// 2) As a callback function, and the number of function evaluations to
// perform on an interval between a start and end point.

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};

// Three Point Formula
// Returns an approximation for the derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9]];

$target = 0;
list($start, $end, $n) = [0, 2, 3];
$derivative = NumericalDifferentiation\ThreePointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\ThreePointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Five Point Formula
// Returns an approximation for the derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4, 25]];

$target = 0;
list($start, $end, $n) = [0, 4, 5];
$derivative = NumericalDifferentiation\FivePointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\FivePointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Second Derivative Midpoint Formula
// Returns an approximation for the second derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9];

$target = 1;
list($start, $end, $n) = [0, 2, 3];
$derivative = NumericalDifferentiation\SecondDerivativeMidpointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\SecondDerivativeMidpointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

Numerical Analysis – Numerical Integration

use MathPHP\NumericalAnalysis\NumericalIntegration;

// Numerical integration approximates the definite integral of a function.
// Each integration method can take input in two ways:
// 1) As a set of points (inputs and outputs of a function)
// 2) As a callback function, and the number of function evaluations to
// perform on an interval between a start and end point.

// Trapezoidal Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\TrapezoidalRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\TrapezoidalRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Simpsons Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4,3]];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 5];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Simpsons 3/8 Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsThreeEighthsRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 5];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsThreeEighthsRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Booles Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4, 25]];
$∫f⟮x⟯dx = NumericalIntegration\BoolesRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**3 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 4, 5];
$∫f⟮x⟯dx = NumericalIntegration\BoolesRuleRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Rectangle Method (open Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\RectangleMethod::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\RectangleMethod::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Midpoint Rule (open Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\MidpointRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\MidpointRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

Numerical Analysis – Root Finding

use MathPHP\NumericalAnalysis\RootFinding;

// Root-finding methods solve for a root of a polynomial.

// f(x) = x⁴ + 8x³ -13x² -92x + 96
$f⟮x⟯ = function($x) {
    return $x**4 + 8 * $x**3 - 13 * $x**2 - 92 * $x + 96;
};

// Newton's Method
$args     = [-4.1];  // Parameters to pass to callback function (initial guess, other parameters)
$target   = 0;       // Value of f(x) we a trying to solve for
$tol      = 0.00001; // Tolerance; how close to the actual solution we would like
$position = 0;       // Which element in the $args array will be changed; also serves as initial guess. Defaults to 0.
$x        = RootFinding\NewtonsMethod::solve($f⟮x⟯, $args, $target, $tol, $position); // Solve for x where f(x) = $target

// Secant Method
$p₀  = -1;      // First initial approximation
$p₁  = 2;       // Second initial approximation
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\SecantMethod::solve($f⟮x⟯, $p₀, $p₁, $tol); // Solve for x where f(x) = 0

// Bisection Method
$a   = 2;       // The start of the interval which contains a root
$b   = 5;       // The end of the interval which contains a root
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\BisectionMethod::solve($f⟮x⟯, $a, $b, $tol); // Solve for x where f(x) = 0

// Fixed-Point Iteration
// f(x) = x⁴ + 8x³ -13x² -92x + 96
// Rewrite f(x) = 0 as (x⁴ + 8x³ -13x² + 96)/92 = x
// Thus, g(x) = (x⁴ + 8x³ -13x² + 96)/92
$g⟮x⟯ = function($x) {
    return ($x**4 + 8 * $x**3 - 13 * $x**2 + 96)/92;
};
$a   = 0;       // The start of the interval which contains a root
$b   = 2;       // The end of the interval which contains a root
$p   = 0;       // The initial guess for our root
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\FixedPointIteration::solve($g⟮x⟯, $a, $b, $p, $tol); // Solve for x where f(x) = 0

Probability – Combinatorics

use MathPHP\Probability\Combinatorics;

list($n, $x, $k) = [10, 3, 4];

// Factorials
$n!  = Combinatorics::factorial($n);
$n‼︎   = Combinatorics::doubleFactorial($n);
$x⁽ⁿ⁾ = Combinatorics::risingFactorial($x, $n);
$x₍ᵢ₎ = Combinatorics::fallingFactorial($x, $n);
$!n  = Combinatorics::subfactorial($n);

// Permutations
$nPn = Combinatorics::permutations($n);     // Permutations of n things, taken n at a time (same as factorial)
$nPk = Combinatorics::permutations($n, $k); // Permutations of n things, taking only k of them

// Combinations
$nCk  = Combinatorics::combinations($n, $k);                            // n choose k without repetition
$nC′k = Combinatorics::combinations($n, $k, Combinatorics::REPETITION); // n choose k with repetition (REPETITION const = true)

// Central binomial coefficient
$cbc = Combinatorics::centralBinomialCoefficient($n);

// Catalan number
$Cn = Combinatorics::catalanNumber($n);

// Lah number
$L⟮n、k⟯ = Combinatorics::lahNumber($n, $k)

// Multinomial coefficient
$groups    = [5, 2, 3];
$divisions = Combinatorics::multinomial($groups);

Probability – Continuous Distributions

use MathPHP\Probability\Distribution\Continuous;

// Beta distribution
$α    = 1; // shape parameter
$β    = 1; // shape parameter
$x    = 2;
$beta = new Continuous\Beta($α, $β);
$pdf  = $beta->pdf($x);
$cdf  = $beta->cdf($x);
$μ    = $beta->mean();

// Cauchy distribution
$x₀     = 2; // location parameter
$γ      = 3; // scale parameter
$x      = 1;
$cauchy = new Continuous\Cauchy(x₀, γ);
$pdf    = $cauchy->pdf(x);
$cdf    = $cauchy->cdf(x);

// χ²-distribution (Chi-Squared)
$k   = 2; // degrees of freedom
$x   = 1;
$χ²  = new Continuous\ChiSquared($k);
$pdf = $χ²->pdf($x);
$cdf = $χ²->cdf($x);

// Dirac delta distribution
$x     = 1;
$dirac = new Continuous\DiracDelta();
$pdf   = $dirac->pdf($x);
$cdf   = $dirac->cdf($x);

// Exponential distribution
$λ           = 1; // rate parameter
$x           = 2;
$exponential = new Continuous\Exponential($λ);
$pdf         = $exponential->pdf($x);
$cdf         = $exponential->cdf($x);
$μ           = $exponential->mean();

// F-distribution
$d₁  = 3; // degree of freedom v1
$d₂  = 4; // degree of freedom v2
$x   = 2;
$f   = new Continuous\F($d₁, $d₂);
$pdf = $f->pdf($x);
$cdf = $f->cdf($x);
$μ   = $f->mean();

// Gamma distribution
$k     = 2; // shape parameter
$θ     = 3; // scale parameter
$x     = 4;
$gamma = new Continuous\Gamma($k, $θ);
$pdf   = $gamma->pdf($x);
$cdf   = $gamma->cdf($x);
$μ     = $gamma->mean();

// Laplace distribution
$μ       = 1;   // location parameter
$b       = 1.5; // scale parameter (diversity)
$x       = 1;
$laplace = new Continuous\Laplace($μ, $b);
$pdf     = $laplace->pdf($x);
$cdf     = $laplace->cdf($x);

// Logistic distribution
$μ        = 2;   // location parameter
$s        = 1.5; // scale parameter
$x        = 3;
$logistic = new Continuous\Logistic($μ, $s);
$pdf      = $logistic->pdf($x);
$cdf      = $logistic->cdf($x);

// Log-logistic distribution (Fisk distribution)
$α           = 1; // scale parameter
$β           = 1; // shape parameter
$x           = 2;
$logLogistic = new Continuous\LogLogistic($α, $β);
$pdf         = $logLogistic->pdf($x);
$cdf         = $logLogistic->cdf($x);
$μ           = $logLogistic->mean();

// Log-normal distribution
$μ         = 6;   // scale parameter
$σ         = 2;   // location parameter
$x         = 4.3;
$logNormal = new Continuous\LogNormal($μ, $σ);
$pdf       = $logNormal->pdf($x);
$cdf       = $logNormal->cdf($x);
$mean      = $logNormal->mean();

// Noncentral T distribution
$ν            = 50; // degrees of freedom
$μ            = 10; // noncentrality parameter
$x            = 8;
$noncenetralT = new Continuous\NoncentralT($ν, $μ);
$pdf          = $noncenetralT->pdf($x);
$cdf          = $noncenetralT->cdf($x);
$mean         = $noncenetralT->mean();

// Normal distribution
$σ      = 1;
$μ      = 0;
$x      = 2;
$normal = new Continuous\Normal($μ, $σ);
$pdf    = $normal->pdf($x);
$cdf    = $normal->cdf($x);

// Pareto distribution
$a      = 1; // shape parameter
$b      = 1; // scale parameter
$x      = 2;
$pareto = new Continuous\Pareto($a, $b);
$pdf    = $pareto->pdf($x);
$cdf    = $pareto->cdf($x);
$μ      = $pareto->mean();

// Standard normal distribution
$z              = 2;
$standardNormal = new Continuous\StandardNormal();
$pdf            = $standardNormal->pdf($z);
$cdf            = $standardNormal->cdf($z);

// Student's t-distribution
$ν        = 3;   // degrees of freedom
$p        = 0.4; // proportion of area
$x        = 2;
$studentT = new Continuous\StudentT::pdf($ν);
$pdf      = $studentT->pdf($x);
$cdf      = $studentT->cdf($x);
$t        = $studentT->inverse2Tails($p);  // t such that the area greater than t and the area beneath -t is p

// Uniform distribution
$a       = 1; // lower boundary of the distribution
$b       = 4; // upper boundary of the distribution
$x       = 2;
$uniform = new Continuous\Uniform($a, $b);
$pdf     = $uniform->pdf($x);
$cdf     = $uniform->cdf($x);
$μ       = $uniform->mean(b);

// Weibull distribution
$k       = 1; // shape parameter
$λ       = 2; // scale parameter
$x       = 2;
$weibull = new Continuous\Weibull($k, $λ);
$pdf     = $weibull->pdf($x);
$cdf     = $weibull->cdf($x);
$μ       = $weibull->mean();

// Other CDFs - All continuous distributions
// Replace '$distribution' with desired distribution.
$inv_cdf = $distribution->inverse($target);   // Inverse CDF of the distribution
$between = $distribution->between($x₁, $x₂);  // Probability of being between two points, x₁ and x₂
$outside = $distribution->outside($x₁, $x);   // Probability of being between below x₁ and above x₂
$above   = $distribution->above($x);          // Probability of being above x to ∞

// Random Number Generator
$random  = $distribution->rand();  // A random number with a given distribution

Probability – Discrete Distributions

use MathPHP\Probability\Distribution\Discrete;

// Bernoulli distribution (special case of binomial where n = 1)
$p         = 0.3;
$k         = 0;
$bernoulli = new Discrete\Bernoulli($p);
$pmf       = $bernoulli->pmf($k);
$cdf       = $bernoulli->cdf($k);

// Binomial distribution
$n        = 2;   // number of events
$p        = 0.5; // probability of success
$r        = 1;   // number of successful events
$binomial = new Discrete\Binomial($n, $p);
$pmf      = $binomial->pmf($r);
$cdf      = $binomial->cdf($r);

// Categorical distribution
$k             = 3;                                    // number of categories
$probabilities = ['a' => 0.3, 'b' => 0.2, 'c' => 0.5]; // probabilities for categorices a, b, and c
$categorical   = new Discrete\Categorical($k, $probabilities);
$pmf_a         = $categorical->pmf('a');
$mode          = $categorical->mode();

// Geometric distribution (failures before the first success)
$p         = 0.5; // success probability
$k         = 2;   // number of trials
$geometric = new Discrete\Geometric($p);
$pmf       = $geometric->pmf($k);
$cdf       = $geometric->cdf($k);

// Hypergeometric distribution
$N        = 50; // population size
$K        = 5;  // number of success states in the population
$n        = 10; // number of draws
$k        = 4;  // number of observed successes
$hypergeo = new Discrete\Hypergeometric($N, $K, $n);
$pmf      = $hypergeo->pmf($k);
$cdf      = $hypergeo->cdf($k);
$μ        = $hypergeo->mean();

// Multinomial distribution
$frequencies   = [7, 2, 3];
$probabilities = [0.40, 0.35, 0.25];
$multinomial   = new Discrete\Multinomial($probabilities);
$pmf           = $multinomial->pmf($frequencies);

// Negative binomial distribution (Pascal)
$r                = 1;   // number of successful events
$P                = 0.5; // probability of success on an individual trial
$x                = 2;   // number of trials required to produce r successes
$negativeBinomial = new Discrete\NegativeBinomial($r, $p);
$pmf              = $negativeBinomial->pmf($x);

// Pascal distribution (Negative binomial)
$r      = 1;   // number of successful events
$P      = 0.5; // probability of success on an individual trial
$x      = 2;   // number of trials required to produce r successes
$pascal = new Discrete\Pascal($r, $p);
$pmf    = $pascal->pmf($x);

// Poisson distribution
$λ       = 2; // average number of successful events per interval
$k       = 3; // events in the interval
$poisson = new Discrete\Poisson($λ);
$pmf     = $poisson->pmf($k);
$cdf     = $poisson->cdf($k);

// Shifted geometric distribution (probability to get one success)
$p                = 0.5; // success probability
$k                = 2;   // number of trials
$shiftedGeometric = new Discrete\ShiftedGeometric($p);
$pmf              = $shiftedGeometric->pmf($k);
$cdf              = $shiftedGeometric->cdf($k);

// Uniform distribution
$a       = 1; // lower boundary of the distribution
$b       = 4; // upper boundary of the distribution
$k       = 2; // percentile
$uniform = new Discrete\Uniform($a, $b);
$pmf     = $uniform->pmf();
$cdf     = $uniform->cdf($k);
$μ       = $uniform->mean();

Probability – Multivariate Distributions

use MathPHP\Probability\Distribution\Multivariate;

// Dirichlet distribution
$αs        = [1, 2, 3];
$xs        = [0.07255081, 0.27811903, 0.64933016];
$dirichlet = new Multivariate\Dirichlet($αs);
$pdf       = $dirichlet->pdf($xs);

// Normal distribution
$μ      = [1, 1.1];
$∑      = MatrixFactory::create([
    [1, 0],
    [0, 1],
]);
$X      = [0.7, 1.4];
$normal = new Multivariate\Normal($μ, $∑);
$pdf    = $normal->pdf($X);

Probability – Distribution Tables

use MathPHP\Probability\Distribution\Table;

// Provided solely for completeness' sake.
// It is statistics tradition to provide these tables.
// MathPHP has dynamic distribution CDF functions you can use instead.

// Standard Normal Table (Z Table)
$table       = Table\StandardNormal::Z_SCORES;
$probability = $table[1.5][0];                 // Value for Z of 1.50

// t Distribution Tables
$table   = Table\TDistribution::ONE_SIDED_CONFIDENCE_LEVEL;
$table   = Table\TDistribution::TWO_SIDED_CONFIDENCE_LEVEL;
$ν       = 5;  // degrees of freedom
$cl      = 99; // confidence level
$t       = $table[$ν][$cl];

// t Distribution Tables
$table = Table\TDistribution::ONE_SIDED_ALPHA;
$table = Table\TDistribution::TWO_SIDED_ALPHA;
$ν     = 5;     // degrees of freedom
$α     = 0.001; // alpha value
$t     = $table[$ν][$α];

// χ² Distribution Table
$table = Table\ChiSquared::CHI_SQUARED_SCORES;
$df    = 2;    // degrees of freedom
$p     = 0.05; // P value
$χ²    = $table[$df][$p];

Sequences – Basic

use MathPHP\Sequence\Basic;

$n = 5; // Number of elements in the sequence

// Arithmetic progression
$d           = 2;  // Difference between the elements of the sequence
$a₁          = 1;  // Starting number for the sequence
$progression = Basic::arithmeticProgression($n, $d, $a₁);
// [1, 3, 5, 7, 9] - Indexed from 1

// Geometric progression (arⁿ⁻¹)
$a           = 2; // Scalar value
$r           = 3; // Common ratio
$progression = Basic::geometricProgression($n, $a, $r);
// [2(3)⁰, 2(3)¹, 2(3)², 2(3)³] = [2, 6, 18, 54] - Indexed from 1

// Square numbers (n²)
$squares = Basic::squareNumber($n);
// [0², 1², 2², 3², 4²] = [0, 1, 4, 9, 16] - Indexed from 0

// Cubic numbers (n³)
$cubes = Basic::cubicNumber($n);
// [0³, 1³, 2³, 3³, 4³] = [0, 1, 8, 27, 64] - Indexed from 0

// Powers of 2 (2ⁿ)
$po2 = Basic::powersOfTwo($n);
// [2⁰, 2¹, 2², 2³, 2⁴] = [1, 2, 4, 8, 16] - Indexed from 0

// Powers of 10 (10ⁿ)
$po10 = Basic::powersOfTen($n);
// [10⁰, 10¹, 10², 10³, 10⁴] = [1, 10, 100, 1000, 10000] - Indexed from 0

// Factorial (n!)
$fact = Basic::factorial($n);
// [0!, 1!, 2!, 3!, 4!] = [1, 1, 2, 6, 24] - Indexed from 0

// Digit sum
$digit_sum = Basic::digitSum($n);
// [0, 1, 2, 3, 4] - Indexed from 0

// Digital root
$digit_root = Basic::digitalRoot($n);
// [0, 1, 2, 3, 4] - Indexed from 0

Sequences – Advanced

use MathPHP\Sequence\Advanced;

$n = 6; // Number of elements in the sequence

// Fibonacci (Fᵢ = Fᵢ₋₁ + Fᵢ₋₂)
$fib = Advanced::fibonacci($n);
// [0, 1, 1, 2, 3, 5] - Indexed from 0

// Lucas numbers
$lucas = Advanced::lucasNumber($n);
// [2, 1, 3, 4, 7, 11] - Indexed from 0

// Pell numbers
$pell = Advanced::pellNumber($n);
// [0, 1, 2, 5, 12, 29] - Indexed from 0

// Triangular numbers (figurate number)
$triangles = Advanced::triangularNumber($n);
// [1, 3, 6, 10, 15, 21] - Indexed from 1

// Pentagonal numbers (figurate number)
$pentagons = Advanced::pentagonalNumber($n);
// [1, 5, 12, 22, 35, 51] - Indexed from 1

// Hexagonal numbers (figurate number)
$hexagons = Advanced::hexagonalNumber($n);
// [1, 6, 15, 28, 45, 66] - Indexed from 1

// Heptagonal numbers (figurate number)
$hexagons = Advanced::heptagonalNumber($n);
// [1, 4, 7, 13, 18, 27] - Indexed from 1

// Look-and-say sequence (describe the previous term!)
$look_and_say = Advanced::lookAndSay($n);
// ['1', '11', '21', '1211', '111221', '312211'] - Indexed from 1

// Lazy caterer's sequence (central polygonal numbers)
$lazy_caterer = Advanced::lazyCaterers($n);
// [1, 2, 4, 7, 11, 16] - Indexed from 0

// Magic squares series (magic constants; magic sums)
$magic_squares = Advanced::magicSquares($n);
// [0, 1, 5, 15, 34, 65] - Indexed from 0

// Perfect powers sequence
$perfect_powers = Advanced::perfectPowers($n);
// [4, 8, 9, 16, 25, 27] - Indexed from 0

// Not perfect powers sequence
$not_perfect_powers = Advanced::notPerfectPowers($n);
// [2, 3, 5, 6, 7, 10] - Indexed from 0

// Prime numbers up to n (n is not the number of elements in the sequence)
$primes = Advanced::primesUpTo(30);
// [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] - Indexed from 0

Set Theory

use MathPHP\SetTheory\Set;
use MathPHP\SetTheory\ImmutableSet;

// Sets and immutable sets
$A = new Set([1, 2, 3]);          // Can add and remove members
$B = new ImmutableSet([3, 4, 5]); // Cannot modify set once created

// Basic set data
$set         = $A->asArray();
$cardinality = $A->length();
$bool        = $A->isEmpty();

// Set membership
$true = $A->isMember(2);
$true = $A->isNotMember(8);

// Add and remove members
$A->add(4);
$A->add(new Set(['a', 'b']));
$A->addMulti([5, 6, 7]);
$A->remove(7);
$A->removeMulti([5, 6]);
$A->clear();

// Set properties against other sets - return boolean
$bool = $A->isDisjoint($B);
$bool = $A->isSubset($B);         // A ⊆ B
$bool = $A->isProperSubset($B);   // A ⊆ B & A ≠ B
$bool = $A->isSuperset($B);       // A ⊇ B
$bool = $A->isProperSuperset($B); // A ⊇ B & A ≠ B

// Set operations with other sets - return a new Set
$A∪B  = $A->union($B);
$A∩B  = $A->intersect($B);
$A\B = $A->difference($B);          // relative complement
$AΔB  = $A->symmetricDifference($B);
$A×B  = $A->cartesianProduct($B);

// Other set operations
$P⟮A⟯ = $A->powerSet();
$C   = $A->copy();

// Print a set
print($A); // Set{1, 2, 3, 4, Set{a, b}}

// PHP Interfaces
$n = count($A);                 // Countable
foreach ($A as $member) { ... } // Iterator

// Fluent interface
$A->add(5)->add(6)->remove(4)->addMulti([7, 8, 9]);

Statistics – ANOVA

use MathPHP\Statistics\ANOVA;

// One-way ANOVA
$sample1 = [1, 2, 3];
$sample2 = [3, 4, 5];
$sample3 = [5, 6, 7];
   ⋮            ⋮

$anova = ANOVA::oneWay($sample1, $sample2, $sample3);
print_r($anova);
/* Array (
 [ANOVA] => Array ( // ANOVA hypothesis test summary data
 [treatment] => Array (
 [SS] => 24 // Sum of squares (between)
 [df] => 2 // Degrees of freedom
 [MS] => 12 // Mean squares
 [F] => 12 // Test statistic
 [P] => 0.008 // P value
 )
 [error] => Array (
 [SS] => 6 // Sum of squares (within)
 [df] => 6 // Degrees of freedom
 [MS] => 1 // Mean squares
 )
 [total] => Array (
 [SS] => 30 // Sum of squares (total)
 [df] => 8 // Degrees of freedom
 )
 )
 [total_summary] => Array ( // Total summary data
 [n] => 9
 [sum] => 36
 [mean] => 4
 [SS] => 174
 [variance] => 3.75
 [sd] => 1.9364916731037
 [sem] => 0.6454972243679
 )
 [data_summary] => Array ( // Data summary (each input sample)
 [0] => Array ([n] => 3 [sum] => 6 [mean] => 2 [SS] => 14 [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
 [1] => Array ([n] => 3 [sum] => 12 [mean] => 4 [SS] => 50 [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
 [2] => Array ([n] => 3 [sum] => 18 [mean] => 6 [SS] => 110 [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
 )
) */

// Two-way ANOVA
/* | Factor B₁ | Factor B₂ | Factor B₃ | ⋯
Factor A₁ | 4, 6, 8 | 6, 6, 9 | 8, 9, 13 | ⋯
Factor A₂ | 4, 8, 9 | 7, 10, 13 | 12, 14, 16| ⋯
 ⋮ ⋮ ⋮ ⋮ */
$factorA₁ = [
  [4, 6, 8],    // Factor B₁
  [6, 6, 9],    // Factor B₂
  [8, 9, 13],   // Factor B₃
];
$factorA₂ = [
  [4, 8, 9],    // Factor B₁
  [7, 10, 13],  // Factor B₂
  [12, 14, 16], // Factor B₃
];
       ⋮

$anova = ANOVA::twoWay($factorA₁, $factorA₂);
print_r($anova);
/* Array (
 [ANOVA] => Array ( // ANOVA hypothesis test summary data
 [factorA] => Array (
 [SS] => 32 // Sum of squares
 [df] => 1 // Degrees of freedom
 [MS] => 32 // Mean squares
 [F] => 5.6470588235294 // Test statistic
 [P] => 0.034994350619895 // P value
 )
 [factorB] => Array (
 [SS] => 93 // Sum of squares
 [df] => 2 // Degrees of freedom
 [MS] => 46.5 // Mean squares
 [F] => 8.2058823529412 // Test statistic
 [P] => 0.0056767297582031 // P value
 )
 [interaction] => Array (
 [SS] => 7 // Sum of squares
 [df] => 2 // Degrees of freedom
 [MS] => 3.5 // Mean squares
 [F] => 0.61764705882353 // Test statistic
 [P] => 0.5555023440712 // P value
 )
 [error] => Array (
 [SS] => 68 // Sum of squares (within)
 [df] => 12 // Degrees of freedom
 [MS] => 5.6666666666667 // Mean squares
 )
 [total] => Array (
 [SS] => 200 // Sum of squares (total)
 [df] => 17 // Degrees of freedom
 )
 )
 [total_summary] => Array ( // Total summary data
 [n] => 18
 [sum] => 162
 [mean] => 9
 [SS] => 1658
 [variance] => 11.764705882353
 [sd] => 3.4299717028502
 [sem] => 0.80845208345444
 )
 [summary_factorA] => Array ( ... ) // Summary data of factor A
 [summary_factorB] => Array ( ... ) // Summary data of factor B
 [summary_interaction] => Array ( ... ) // Summary data of interactions of factors A and B
) */

Statistics – Averages

use MathPHP\Statistics\Average;

$numbers = [13, 18, 13, 14, 13, 16, 14, 21, 13];

// Mean, median, mode
$mean   = Average::mean($numbers);
$median = Average::median($numbers);
$mode   = Average::mode($numbers); // Returns an array — may be multimodal

// Weighted mean
$weights       = [12, 1, 23, 6, 12, 26, 21, 12, 1];
$weighted_mean = Average::weightedMean($numbers, $weights)

// Other means of a list of numbers
$geometric_mean      = Average::geometricMean($numbers);
$harmonic_mean       = Average::harmonicMean($numbers);
$contraharmonic_mean = Average::contraharmonicMean($numbers);
$quadratic_mean      = Average::quadraticMean($numbers);  // same as rootMeanSquare
$root_mean_square    = Average::rootMeanSquare($numbers); // same as quadraticMean
$trimean             = Average::trimean($numbers);
$interquartile_mean  = Average::interquartileMean($numbers); // same as iqm
$interquartile_mean  = Average::iqm($numbers);               // same as interquartileMean
$cubic_mean          = Average::cubicMean($numbers);

// Truncated mean (trimmed mean)
$trim_percent   = 25;
$truncated_mean = Average::truncatedMean($numbers, $trim_percent);

// Generalized mean (power mean)
$p                = 2;
$generalized_mean = Average::generalizedMean($numbers, $p); // same as powerMean
$power_mean       = Average::powerMean($numbers, $p);       // same as generalizedMean

// Lehmer mean
$p           = 3;
$lehmer_mean = Average::lehmerMean($numbers, $p);

// Moving averages
$n       = 3;
$weights = [3, 2, 1];
$SMA     = Average::simpleMovingAverage($numbers, $n);             // 3 n-point moving average
$CMA     = Average::cumulativeMovingAverage($numbers);
$WMA     = Average::weightedMovingAverage($numbers, $n, $weights);
$EPA     = Average::exponentialMovingAverage($numbers, $n);

// Means of two numbers
list($x, $y) = [24, 6];
$agm           = Average::arithmeticGeometricMean($x, $y); // same as agm
$agm           = Average::agm($x, $y);                     // same as arithmeticGeometricMean
$log_mean      = Average::logarithmicMean($x, $y);
$heronian_mean = Average::heronianMean($x, $y);
$identric_mean = Average::identricMean($x, $y);

// Averages report
$averages = Average::describe($numbers);
print_r($averages);
/* Array (
 [mean] => 15
 [median] => 14
 [mode] => Array ( [0] => 13 )
 [geometric_mean] => 14.789726414533
 [harmonic_mean] => 14.605077399381
 [contraharmonic_mean] => 15.474074074074
 [quadratic_mean] => 15.235193176035
 [trimean] => 14.5
 [iqm] => 14
 [cubic_mean] => 15.492307432707
) */

Statistics – Circular

use MathPHP\Statistics\Circular;

$angles = [1.51269877, 1.07723915, 0.81992282];

$θ = Circular::mean($angles);
$R = Circular::resultantLength($angles);
$ρ = Circular::meanResultantLength($angles);
$V = Circular::variance($angles);
$ν = Circular::standardDeviation($angles);

// Descriptive circular statistics report
$stats = Circular::describe($angles);
print_r($stats);
/* Array (
 [n] => 3
 [mean] => 1.1354043006436
 [resultant_length] => 2.8786207547493
 [mean_resultant_length] => 0.9595402515831
 [variance] => 0.040459748416901
 [sd] => 0.28740568481722
); */

Statistics – Correlation

use MathPHP\Statistics\Correlation;

$X = [1, 2, 3, 4, 5];
$Y = [2, 3, 4, 4, 6];

// Covariance
$σxy = Correlation::covariance($X, $Y);  // Has optional parameter to set population (defaults to sample covariance)

// Weighted covariance
$w    = [2, 3, 1, 1, 5];
$σxyw = Correlation::weightedCovariance($X, $Y, $w);

// r - Pearson product-moment correlation coefficient (Pearson's r)
$r = Correlation::r($X, $Y);  // Has optional parameter to set population (defaults to sample correlation coefficient)

// Weighted correlation coefficient
$rw = Correlation::weightedCorrelationCoefficient($X, $Y, $w);

// R² - Coefficient of determination
$R² = Correlation::r2($X, $Y);  // Has optional parameter to set population (defaults to sample coefficient of determination)

// τ - Kendall rank correlation coefficient (Kendall's tau)
$τ = Correlation::kendallsTau($X, $Y);

// ρ - Spearman's rank correlation coefficient (Spearman's rho)
$ρ = Correlation::spearmansRho($X, $Y);

// Descriptive correlation report
$stats = Correlation::describe($X, $Y);
print_r($stats);
/* Array (
 [cov] => 2.25
 [r] => 0.95940322360025
 [r2] => 0.92045454545455
 [tau] => 0.94868329805051
 [rho] => 0.975
) */

// Confidence ellipse - create an ellipse surrounding the data at a specified standard deviation
$sd           = 1;
$num_points   = 11; // Optional argument specifying number of points of the ellipse
$ellipse_data = Correlation::confidenceEllipse($X, $Y, $sd, $num_points);

Statistics – Descriptive

use MathPHP\Statistics\Descriptive;

$numbers = [13, 18, 13, 14, 13, 16, 14, 21, 13];

// Range and midrange
$range    = Descriptive::range($numbers);
$midrange = Descriptive::midrange($numbers);

// Variance (population and sample)
$σ² = Descriptive::populationVariance($numbers); // n degrees of freedom
$S² = Descriptive::sampleVariance($numbers);     // n - 1 degrees of freedom

// Variance (Custom degrees of freedom)
$df = 5;                                    // degrees of freedom
$S² = Descriptive::variance($numbers, $df); // can specify custom degrees of freedom

// Weighted sample variance
$weights = [0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
$σ²w     = Descriptive::weightedSampleVariance($numbers, $weights, $biased = false);

// Standard deviation (For a sample; uses sample variance)
$σ = Descriptive::sd($numbers);                // same as standardDeviation;
$σ = Descriptive::standardDeviation($numbers); // same as sd;

// SD+ (Standard deviation for a population; uses population variance)
$SD+ = Descriptive::sd($numbers, Descriptive::POPULATION); // POPULATION constant = true
$SD+ = Descriptive::standardDeviation($numbers, true);     // same as sd with POPULATION constant

// Coefficient of variation (cᵥ)
$cᵥ = Descriptive::coefficientOfVariation($numbers);

// MAD - mean/median absolute deviations
$mean_mad   = Descriptive::meanAbsoluteDeviation($numbers);
$median_mad = Descriptive::medianAbsoluteDeviation($numbers);

// Quartiles (inclusive and exclusive methods)
// [0% => 13, Q1 => 13, Q2 => 14, Q3 => 17, 100% => 21, IQR => 4]
$quartiles = Descriptive::quartiles($numbers);          // Has optional parameter to specify method. Default is Exclusive
$quartiles = Descriptive::quartilesExclusive($numbers);
$quartiles = Descriptive::quartilesInclusive($numbers);

// IQR - Interquartile range
$IQR = Descriptive::interquartileRange($numbers); // Same as IQR; has optional parameter to specify quartile method.
$IQR = Descriptive::iqr($numbers);                // Same as interquartileRange; has optional parameter to specify quartile method.

// Percentiles
$twentieth_percentile    = Descriptive::percentile($numbers, 20);
$ninety_fifth_percentile = Descriptive::percentile($numbers, 95);

// Midhinge
$midhinge = Descriptive::midhinge($numbers);

// Describe a list of numbers - descriptive stats report
$stats = Descriptive::describe($numbers); // Has optional parameter to set population or sample calculations
print_r($stats);
/* Array (
 [n] => 9
 [min] => 13
 [max] => 21
 [mean] => 15
 [median] => 14
 [mode] => Array ( [0] => 13 )
 [range] => 8
 [midrange] => 17
 [variance] => 8
 [sd] => 2.8284271247462
 [cv] => 0.18856180831641
 [mean_mad] => 2.2222222222222
 [median_mad] => 1
 [quartiles] => Array (
 [0%] => 13
 [Q1] => 13
 [Q2] => 14
 [Q3] => 17
 [100%] => 21
 [IQR] => 4
 )
 [midhinge] => 15
 [skewness] => 1.4915533665654
 [ses] => 0.71713716560064
 [kurtosis] => 0.1728515625
 [sek] => 1.3997084244475
 [sem] => 0.94280904158206
 [ci_95] => Array (
 [ci] => 1.8478680091392
 [lower_bound] => 13.152131990861
 [upper_bound] => 16.847868009139
 )
 [ci_99] => Array (
 [ci] => 2.4285158135783
 [lower_bound] => 12.571484186422
 [upper_bound] => 17.428515813578
 )
) */

// Five number summary - five most important sample percentiles
$summary = Descriptive::fiveNumberSummary($numbers);
// [min, Q1, median, Q3, max]

Statistics – Distance and Divergence

use MathPHP\Statistics\Distance;

// Probability distributions
$p = [0.2, 0.5, 0.3];
$q = [0.1, 0.4, 0.5];

// Distances
$DB⟮p、q⟯ = Distance::bhattacharyyaDistance($p, $q);
$H⟮p、q⟯  = Distance::hellingerDistance($p, $q)

// Divergences
$Dkl⟮P‖Q⟯ = Distance::kullbackLeiblerDivergence($p, $q);
$JSD⟮P‖Q⟯ = Distance::jensenShannonDivergence($p, $q);

Statistics – Distributions

use MathPHP\Statistics\Distribution;

$grades = ['A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'D', 'F'];

// Frequency distributions (frequency and relative frequency)
$frequencies          = Distribution::frequency($grades);         // [ A => 2, B => 4, C => 2, D => 1, F => 1 ]
$relative_frequencies = Distribution::relativeFrequency($grades); // [ A => 0.2, B => 0.4, C => 0.2, D => 0.1, F => 0.1 ]

// Cumulative frequency distributions (cumulative and cumulative relative)
$cumulative_frequencies          = Distribution::cumulativeFrequency($grades);         // [ A => 2, B => 6, C => 8, D => 9, F => 10 ]
$cumulative_relative_frequencies = Distribution::cumulativeRelativeFrequency($grades); // [ A => 0.2, B => 0.6, C => 0.8, D => 0.9, F => 1 ]

// Stem and leaf plot
// Return value is array where keys are the stems, values are the leaves
$values             = [44, 46, 47, 49, 63, 64, 66, 68, 68, 72, 72, 75, 76, 81, 84, 88, 106];
$stem_and_leaf_plot = Distribution::stemAndLeafPlot($values);
// [4 => [4, 6, 7, 9], 5 => [], 6 => [3, 4, 6, 8, 8], 7 => [2, 2, 5, 6], 8 => [1, 4, 8], 9 => [], 10 => [6]]

// Optional second parameter will print stem and leaf plot to STDOUT
Distribution::stemAndLeafPlot($values, Distribution::PRINT);
/*
 4 | 4 6 7 9
 5 |
 6 | 3 4 6 8 8
 7 | 2 2 5 6
 8 | 1 4 8
 9 |
10 | 6
*/

Statistics – Effect Size

use MathPHP\Statistics\EffectSize;

$SSt = 24;  // Sum of squares treatment
$SSE = 300; // Sum of squares error
$SST = 600; // Sum of squares total
$dft = 1;   // Degrees of freedom treatment
$MSE = 18;  // Mean squares error

// η² - Eta-squared
$η²  = EffectSize::etaSquared($SSt, $SST);
$η²p = EffectSize::partialEtaSquared($SSt, $SSE);

// ω² - Omega-squared
$ω² = EffectSize::omegaSquared($SSt, $dft, $SST, $MSE);

// Cohen's ƒ²
$ƒ² = EffectSize::cohensF($η²);
$ƒ² = EffectSize::cohensF($ω²);
$ƒ² = EffectSize::cohensF($R²);

// Cohen's q
list($r₁, $r₂) = [0.1, 0.2];
$q = EffectSize::cohensQ($r₁, $r₂);

// Cohen's d
list($μ₁, $σ₁) = [6.7, 1.2];
list($μ₂, $σ₂) = [6, 1];
$d = EffectSize::cohensD($μ₁, $μ₂, $σ₁, $σ₂);

// Hedges' g
list($μ₁, $σ₁, $n₁) = [6.7, 1.2, 15];
list($μ₂, $σ₂, $n₂) = [6, 1, 15];
$g = EffectSize::hedgesG($μ₁, $μ₂, $σ₁, $σ₂, $n₁, $n₂);

// Glass' Δ
$Δ = EffectSize::glassDelta($μ₁, $μ₂, $σ₂);

Statistics – Experiments

use MathPHP\Statistics\Experiment;

$a = 28;   // Exposed and event present
$b = 129;  // Exposed and event absent
$c = 4;    // Non-exposed and event present
$d = 133;  // Non-exposed and event absent

// Risk ratio (relative risk) - RR
$RR = Experiment::riskRatio($a, $b, $c, $d);
// ['RR' => 6.1083, 'ci_lower_bound' => 2.1976, 'ci_upper_bound' => 16.9784, 'p' => 0.0005]

// Odds ratio (OR)
$OR = Experiment::oddsRatio($a, $b, $c, $d);
// ['OR' => 7.2171, 'ci_lower_bound' => 2.4624, 'ci_upper_bound' => 21.1522, 'p' => 0.0003]

// Likelihood ratios (positive and negative)
$LL = Experiment::likelihoodRatio($a, $b, $c, $d);
// ['LL+' => 7.4444, 'LL-' => 0.3626]

$sensitivity = 0.67;
$specificity = 0.91;
$LL          = Experiment::likelihoodRatioSS($sensitivity, $specificity);

Statistics – Kernel Density Estimation

use MathPHP\Statistics\KernelDensityEstimation

$data = [-2.76, -1.09, -0.5, -0.15, 0.22, 0.69, 1.34, 1.75];
$x    = 0.5;

// Density estimator with default bandwidth (normal distribution approximation) and kernel function (standard normal)
$kde     = new KernelDensityEstimation($data);
$density = $kde->evaluate($x)

// Custom bandwidth
$h = 0.1;
$kde->setBandwidth($h);

// Library of built-in kernel functions
$kde->setKernelFunction(KernelDensityEstimation::STANDARD_NORMAL);
$kde->setKernelFunction(KernelDensityEstimation::NORMAL);
$kde->setKernelFunction(KernelDensityEstimation::UNIFORM);
$kde->setKernelFunction(KernelDensityEstimation::TRIANGULAR);
$kde->setKernelFunction(KernelDensityEstimation::EPANECHNIKOV);
$kde->setKernelFunction(KernelDensityEstimation::TRICUBE);

// Set custom kernel function (user-provided callable)
$kernel = function ($x) {
  if (abs($x) > 1) {
      return 0;
  } else {
      return 70 / 81 * ((1 - abs($x) ** 3) ** 3);
  }
};
$kde->setKernelFunction($kernel);

// All customization optionally can be done in the constructor
$kde = new KernelDesnsityEstimation($data, $h, $kernel);

Statistics – Random Variables

use MathPHP\Statistics\RandomVariable;

$X = [1, 2, 3, 4];
$Y = [2, 3, 4, 5];

// Central moment (nth moment)
$second_central_moment = RandomVariable::centralMoment($X, 2);
$third_central_moment  = RandomVariable::centralMoment($X, 3);

// Skewness (population and sample)
$skewness = RandomVariable::skewness($X);            // general method of calculating skewness
$skewness = RandomVariable::populationSkewness($X);  // similar to Excel's SKEW.P
$skewness = RandomVariable::sampleSkewness($X);      // similar to Excel's SKEW
$SES      = RandomVariable::ses(count($X));          // standard error of skewness

// Kurtosis (excess)
$kurtosis    = RandomVariable::kurtosis($X);
$platykurtic = RandomVariable::isPlatykurtic($X); // true if kurtosis is less than zero
$leptokurtic = RandomVariable::isLeptokurtic($X); // true if kurtosis is greater than zero
$mesokurtic  = RandomVariable::isMesokurtic($X);  // true if kurtosis is zero
$SEK         = RandomVariable::sek(count($X));    // standard error of kurtosis

// Standard error of the mean (SEM)
$sem = RandomVariable::standardErrorOfTheMean($X); // same as sem
$sem = RandomVariable::sem($X);                    // same as standardErrorOfTheMean

// Confidence interval
$μ  = 90; // sample mean
$n  = 9;  // sample size
$σ  = 36; // standard deviation
$cl = 99; // confidence level
$ci = RandomVariable::confidenceInterval($μ, $n, $σ, $cl); // Array( [ci] => 30.91, [lower_bound] => 59.09, [upper_bound] => 120.91 )

Statistics – Regressions

use MathPHP\Statistics\Regression;

$points = [[1,2], [2,3], [4,5], [5,7], [6,8]];

// Simple linear regression (least squares method)
$regression = new Regression\Linear($points);
$parameters = $regression->getParameters();          // [m => 1.2209302325581, b => 0.6046511627907]
$equation   = $regression->getEquation();            // y = 1.2209302325581x + 0.6046511627907
$y          = $regression->evaluate(5);              // Evaluate for y at x = 5 using regression equation
$ci         = $regression->ci(5, 0.5);               // Confidence interval for x = 5 with p-value of 0.5
$pi         = $regression->pi(5, 0.5);               // Prediction interval for x = 5 with p-value of 0.5; Optional number of trials parameter.
$Ŷ          = $regression->yHat();
$r          = $regression->r();                      // same as correlationCoefficient
$r²         = $regression->r2();                     // same as coefficientOfDetermination
$se         = $regression->standardErrors();         // [m => se(m), b => se(b)]
$t          = $regression->tValues();                // [m => t, b => t]
$p          = $regression->tProbability();           // [m => p, b => p]
$F          = $regression->fStatistic();
$p          = $regression->fProbability();
$h          = $regression->leverages();
$e          = $regression->residuals();
$D          = $regression->cooksD();
$DFFITS     = $regression->dffits();
$SStot      = $regression->sumOfSquaresTotal();
$SSreg      = $regression->sumOfSquaresRegression();
$SSres      = $regression->sumOfSquaresResidual();
$MSR        = $regression->meanSquareRegression();
$MSE        = $regression->meanSquareResidual();
$MSTO       = $regression->meanSquareTotal();
$error      = $regression->errorSd();                // Standard error of the residuals
$V          = $regression->regressionVariance();
$n          = $regression->getSampleSize();          // 5
$points     = $regression->getPoints();              // [[1,2], [2,3], [4,5], [5,7], [6,8]]
$xs         = $regression->getXs();                  // [1, 2, 4, 5, 6]
$ys         = $regression->getYs();                  // [2, 3, 5, 7, 8]
$ν          = $regression->degreesOfFreedom();

// Linear regression through a fixed point (least squares method)
$force_point = [0,0];
$regression  = new Regression\LinearThroughPoint($points, $force_point);
$parameters  = $regression->getParameters();
$equation    = $regression->getEquation();
$y           = $regression->evaluate(5);
$Ŷ           = $regression->yHat();
$r           = $regression->r();
$r²          = $regression->r2();
 ⋮                     ⋮

// Theil–Sen estimator (Sen's slope estimator, Kendall–Theil robust line)
$regression  = new Regression\TheilSen($points);
$parameters  = $regression->getParameters();
$equation    = $regression->getEquation();
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Use Lineweaver-Burk linearization to fit data to the Michaelis–Menten model: y = (V * x) / (K + x)
$regression  = new Regression\LineweaverBurk($points);
$parameters  = $regression->getParameters();  // [V, K]
$equation    = $regression->getEquation();    // y = Vx / (K + x)
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Use Hanes-Woolf linearization to fit data to the Michaelis–Menten model: y = (V * x) / (K + x)
$regression  = new Regression\HanesWoolf($points);
$parameters  = $regression->getParameters();  // [V, K]
$equation    = $regression->getEquation();    // y = Vx / (K + x)
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Power law regression - power curve (least squares fitting)
$regression = new Regression\PowerLaw($points);
$parameters = $regression->getParameters();   // [a => 56.483375436574, b => 0.26415375648621]
$equation   = $regression->getEquation();     // y = 56.483375436574x^0.26415375648621
$y          = $regression->evaluate(5);
 ⋮                     ⋮

// LOESS - Locally Weighted Scatterplot Smoothing (Local regression)
$α          = 1/3;                         // Smoothness parameter
$λ          = 1;                           // Order of the polynomial fit
$regression = new Regression\LOESS($points, $α, $λ);
$y          = $regression->evaluate(5);
$Ŷ          = $regression->yHat();
 ⋮                     ⋮

Statistics – Significance Testing

use MathPHP\Statistics\Significance;

// Z test - One sample (z and p values)
$Hₐ = 20;   // Alternate hypothesis (M Sample mean)
$n  = 200;  // Sample size
$H₀ = 19.2; // Null hypothesis (μ Population mean)
$σ  = 6;    // SD of population (Standard error of the mean)
$z  = Significance:zTest($Hₐ, $n, $H₀, $σ);           // Same as zTestOneSample
$z  = Significance:zTestOneSample($Hₐ, $n, $H₀, $σ);  // Same as zTest
/* [
 'z' => 1.88562, // Z score
 'p1' => 0.02938, // one-tailed p value
 'p2' => 0.0593, // two-tailed p value
] */

// Z test - Two samples (z and p values)
$μ₁ = 27;   // Sample mean of population 1
$μ₂ = 33;   // Sample mean of population 2
$n₁ = 75;   // Sample size of population 1
$n₂ = 50;   // Sample size of population 2
$σ₁ = 14.1; // Standard deviation of sample mean 1
$σ₂ = 9.5;  // Standard deviation of sample mean 2
$z  = Significance::zTestTwoSample($μ₁, $μ₂, $n₁, $n₂, $σ₁, $σ₂);
/* [
 'z' => -2.36868418147285, // z score
 'p1' => 0.00893, // one-tailed p value
 'p2' => 0.0179, // two-tailed p value
] */

// Z score
$M = 8; // Sample mean
$μ = 7; // Population mean
$σ = 1; // Population SD
$z = Significance::zScore($M, $μ, $σ);

// T test - One sample (from sample data)
$a     = [3, 4, 4, 5, 5, 5, 6, 6, 7, 8]; // Data set
$H₀    = 300;                            // Null hypothesis (μ₀ Population mean)
$tTest = Significance::tTest($a, $H₀)
print_r($tTest);
/* Array (
 [t] => 0.42320736951516 // t score
 [df] => 9 // degrees of freedom
 [p1] => 0.34103867713806 // one-tailed p value
 [p2] => 0.68207735427613 // two-tailed p value
 [mean] => 5.3 // sample mean
 [sd] => 1.4944341180973 // standard deviation
) */

// T test - One sample (from summary data)
$Hₐ    = 280; // Alternate hypothesis (M Sample mean)
$s     = 50;  // Standard deviation of sample
$n     = 15;  // Sample size
$H₀    = 300; // Null hypothesis (μ₀ Population mean)
$tTest = Significance::tTestOneSampleFromSummaryData($Hₐ, $s, $n, $H₀);
print_r($tTest);
/* Array (
 [t] => -1.549193338483 // t score
 [df] => 14 // degreees of freedom
 [p1] => 0.071820000122611 // one-tailed p value
 [p2] => 0.14364000024522 // two-tailed p value
 [mean] => 280 // sample mean
 [sd] => 50 // standard deviation
) */

// T test - Two samples (from sample data)
$x₁    = [27.5, 21.0, 19.0, 23.6, 17.0, 17.9, 16.9, 20.1, 21.9, 22.6, 23.1, 19.6, 19.0, 21.7, 21.4];
$x₂    = [27.1, 22.0, 20.8, 23.4, 23.4, 23.5, 25.8, 22.0, 24.8, 20.2, 21.9, 22.1, 22.9, 20.5, 24.4];
$tTest = Significance::tTest($x₁, $x₂);
print_r($tTest);
/* Array (
 [t] => -2.4553600286929 // t score
 [df] => 24.988527070145 // degrees of freedom
 [p1] => 0.010688914613979 // one-tailed p value
 [p2] => 0.021377829227958 // two-tailed p value
 [mean1] => 20.82 // mean of sample x₁
 [mean2] => 22.98667 // mean of sample x₂
 [sd1] => 2.804894 // standard deviation of x₁
 [sd2] => 1.952605 // standard deviation of x₂
) */

// T test - Two samples (from summary data)
$μ₁    = 42.14; // Sample mean of population 1
$μ₂    = 43.23; // Sample mean of population 2
$n₁    = 10;    // Sample size of population 1
$n₂    = 10;    // Sample size of population 2
$σ₁    = 0.683; // Standard deviation of sample mean 1
$σ₂    = 0.750; // Standard deviation of sample mean 2
$tTest = Significance::tTestTwoSampleFromSummaryData($μ₁, $μ₂, $n₁, $n₂, $σ₁, $σ₂);
print_r($tTest);
/* Array (
 [t] => -3.3972305988708 // t score
 [df] => 17.847298548027 // degrees of freedom
 [p1] => 0.0016211251126198 // one-tailed p value
 [p2] => 0.0032422502252396 // two-tailed p value
 [mean1] => 42.14
 [mean2] => 43.23
 [sd1] => 0.6834553
 [sd2] => 0.7498889
] */

// T score
$Hₐ = 280; // Alternate hypothesis (M Sample mean)
$s  = 50;  // SD of sample
$n  = 15;  // Sample size
$H₀ = 300; // Null hypothesis (μ₀ Population mean)
$t  = Significance::tScore($Hₐ, $s, $n, $H);

// χ² test (chi-squared goodness of fit test)
$observed = [4, 6, 17, 16, 8, 9];
$expected = [10, 10, 10, 10, 10, 10];
$χ²       = Significance::chiSquaredTest($observed, $expected);
// ['chi-square' => 14.2, 'p' => 0.014388]

Trigonometry

use MathPHP\Trigonometry;

$n      = 9;
$points = Trigonometry::unitCircle($n); // Produce n number of points along the unit circle

Unit Tests

Beyond 100% code coverage!

MathPHP has thousands of unit tests testing individual functions directly with numerous data inputs to achieve 100% test coverage. MathPHP unit tests also test mathematical axioms which indirectly test the same functions in multiple different ways ensuring that those math properties all work out according to the axioms.

$ cd tests
$ phpunit
Coverage Status
Build Status

Standards

MathPHP conforms to the following standards:

License

MathPHP is licensed under the MIT License.

EasyTask简单易用的PHP常驻内存定时器

  EasyTask是PHP常驻内存定时器Composer包,定位与Javascript的setInterval定时器效果一致,您可以用它来完成需要重复运行的任务(如订单超时自动取消,短信邮件异步推送,队列/消费者/频道订阅者等等),甚至处理Crontab计划任务(如每天凌晨1点-3点同步DB数据,每月1号生成月度统一报表,每晚10点重启nginx服务器等等);内置任务异常上报功能,异常错误您都可以自定义处理(例如实现异常错误自动短信邮件通知);还支持任务异常退出自动重启功能,让您的任务运行更稳定 ,工具包同时支持windows、linux、mac环境运行。

运行环境

Composer安装

  composer require easy-task/easy-task

【一】. 快速入门->创建任务
//初始化
$task = new Task();

// 设置非常驻内存
$task->setDaemon(false);

// 设置项目名称
$task->setPrefix('EasyTask');

// 设置记录运行时目录(日志或缓存目录)
$task->setRunTimePath('./Application/Runtime/');

// 1.添加闭包函数类型定时任务(开启2个进程,每隔10秒执行1次你写闭包方法中的代码)
$task->addFunc(function () {
    $url = 'https://www.gaojiufeng.cn/?id=243';
    @file_get_contents($url);
}, 'request', 10, 2);

// 2.添加类的方法类型定时任务(同时支持静态方法)(开启1个进程,每隔20秒执行一次你设置的类的方法)
$task->addClass(Sms::class, 'send', 'sendsms', 20, 1);

// 3.添加指令类型的定时任务(开启1个进程,每隔10秒执行1次)
$command = 'php /www/web/orderAutoCancel.php';
$task->addCommand($command,'orderCancel',10,1);

// 4.添加闭包函数任务,不需要定时器,立即执行(开启1个进程)
$task->addFunc(function () {
    while(true)
    {
       //todo
    }
}, 'request', 0, 1);

// 5.每晚9点半通过curl命令访问网站
$task->addCommand('curl https://www.gaojiufeng.cn', 'curl', '30 21 * * *', 1);

// 启动任务
$task->start();

【二】. 快速入门->连贯操作
$task = new Task();

// 设置常驻内存
$task->setDaemon(true)   

// 设置项目名称
->setPrefix('ThinkTask')   

// 设置系统时区
->setTimeZone('Asia/Shanghai')  

// 设置子进程挂掉自动重启
->setAutoRecover(true)  

// 设置PHP运行路径,一般Window系统才需要设置,当系统无法找到才需要您手动设置
->setPhpPath('C:/phpEnv/php/php-7.0/php.exe')

/**
 * 设置运行时目录(日志或缓存目录)
 */
->setRunTimePath('./Application/Runtime/')

/**
 * 关闭EasyTask的异常注册
 * EasyTask将不再监听set_error_handler/set_exception_handler/register_shutdown_function事件
 */
->setCloseErrorRegister(true)

/**
 * 设置接收运行中的错误或者异常(方式1)
 * 您可以自定义处理异常信息,例如将它们发送到您的邮件中,短信中,作为预警处理
 * (不推荐的写法,除非您的代码健壮)
 */
->setErrorRegisterNotify(function ($ex) {
    //获取错误信息|错误行|错误文件
    $message = $ex->getMessage();
    $file = $ex->getFile();
    $line = $ex->getLine();
})

/**
 * 设置接收运行中的错误或者异常的Http地址(方式2)
 * Easy_Task会POST通知这个url并传递以下参数:
 * errStr:错误信息
 * errFile:错误文件
 * errLine:错误行
 * 您的Url收到POST请求可以编写代码发送邮件或短信通知您
 * (推荐的写法)
 */
->setErrorRegisterNotify('https://www.gaojiufeng.cn/rev.php')

// 添加任务定时执行闭包函数
->addFunc(function () {
    echo 'Success3' . PHP_EOL;
}, 'fucn', 20, 1)   

// 添加任务定时执行类的方法
->addClass(Sms::class, 'send', 'sendsms1', 20, 1)   

// 添加任务定时执行命令
->addCommand('php /www/wwwroot/learn/curl.php','cmd',6,1)

// 启动任务
->start();

【三】. 快速入门->命令整合
// 获取命令
$force = empty($_SERVER['argv']['2']) ? '' : $_SERVER['argv']['2'];
$command = empty($_SERVER['argv']['1']) ? '' : $_SERVER['argv']['1'];

// 配置任务
$task = new Task();
$task->setRunTimePath('./Application/Runtime/');
$task->addFunc(function () {
        $url = 'https://www.gaojiufeng.cn/?id=271';
        @file_get_contents($url);
    }, 'request', 10, 2);;

// 根据命令执行
if ($command == 'start')
{
    $task->start();
}
elseif ($command == 'status')
{
    $task->status();
}
elseif ($command == 'stop')
{
    $force = ($force == 'force'); //是否强制停止
    $task->stop($force);
}
else
{
    exit('Command is not exist');
}

启动任务: php console.php start
查询任务: php console.php status
普通关闭: php console.php stop
强制关闭: php console.php stop force

【四】. 快速入门->认识输出信息
┌─────┬──────────────┬─────────────────────┬───────┬────────┬──────┐
│ pid │ name         │ started             │ time │ status │ ppid │
├─────┼──────────────┼─────────────────────┼───────┼────────┼──────┤
│ 32  │ Task_request │ 2020-01-10 15:55:44 │ 10    │ active │ 31   │
│ 33  │ Task_request │ 2020-01-10 15:55:44 │ 10    │ active │ 31   │
└─────┴──────────────┴─────────────────────┴───────┴────────┴──────┘
参数:
pid:任务进程id
name:任务别名
started:任务启动时间
time:任务执行时间
status:任务状态
ppid:守护进程id

【五】. 进阶了解->建议阅读
(1). 建议您使用绝对路径进行开发,是标准更是规范
(2). 禁止在任务中使用exit/die语法,否则导致整个进程退出
(3). Windows安装Wpc扩展时请关闭杀毒软件,避免误报
(4). Windows建议开启popen,pclose方法,会自动尝试帮您解决CMD输出中文乱码问题,请尽量使用CMD管理员方式运行
(5). Windows命令行不支持utf8国际标准编码,可切换git_bash来运行,解决乱码问题
(6). Windows提示Failed to create COM object `Wpc.Core': 无效的语法,请按照文档安装Wpc扩展
(7). Windows提示com() has been disabled for security reasons,请在php.ini中删除disable_classes = com配置项目
(8). 日志文件在运行时目录的Log目录下,标出输入输出异常文件在运行时目录Std目录下
(9). 普通停止任务,任务会在执行成功后开始安全退出,强制停止任务直接退出任务,可能正在执行就强制退出
(10). 开发遵守先同步启动测试正常运行无任何报错再设置异步运行,有问题查看日志文件或者标准输入输出异常文件,或者上QQ群反馈

【六】. 进阶了解->框架集成教程

  -> thinkphp3.2.x教程.

  -> thinkPhp5.x.x教程.

  -> thinkPhp6.x.x教程.

  -> laravelPhp6.x.x教程.

【七】. 进阶了解->推荐操作
(1).推荐使用7.1以上版本的PHP,支持异步信号,不依赖ticks
(2).推荐安装php_event扩展基于事件轮询的毫秒级定时支持

【八】. 进阶了解->时间参数支持crontab命令
 (1).特殊表达式:
    @yearly                    每年运行一次 等同于(0 0 1 1 *) 
    @annually                  每年运行一次 等同于(0 0 1 1 *)
    @monthly                   每月运行一次 等同于(0 0 1 * *) 
    @weekly                    每周运行一次 等同于(0 0 * * 0) 
    @daily                     每日运行一次 等同于(0 0 * * *) 
    @hourly                    每小时运行一次 等同于(0 * * * *)
 (2).标准表达式:
    '30 21 * * *'              每天晚上21:30执行一次
    '0 23 * * 6'               每周星期六的晚上23:00执行一次
    '3,15 * * * *'             每小时的第3分钟和第15分钟执行一次
    '45 4 1,10,22 * *'         每月的1/10/22日的04:45执行一次
    '3,15 8-11 * * *'          每天上午8点到11点的第3分钟和第15分钟执行一次
    其他指令请自己测试
   使用example/build_cron_date.php生成执行时间列表来检查自己的命令是否符合预期

Yii2.0实现的批量更新及批量插入功能示例

本文实例讲述了Yii2.0实现的批量更新及批量插入功能。分享给大家供大家参考,具体如下:

批量更新

方法1

/**
* 批量更新循环周期
* @param array $condition
* $condition = ['advertise_id' => '','status' => '', 'weekdays'=>[1,2,3]] 查询条件
* $params = ['status' => '']
* @param $params
* @return bool
*/
public function batchUpdateAdSchedule($condition = [], $params)
{
  if (count($condition) == 0 || !is_array($condition) || count($params) == 0) {
    return false;
  }
  $conditions = ' 1 = 1 ';
  $bind = [];
  if (array_key_exists('advertise_id', $condition) && !empty($condition['advertise_id'])) {
    $conditions .= ' AND `advertise_id` = :advertiseId';
    $bind['advertiseId'] = $condition['advertise_id'];
  }
  if (array_key_exists('status', $condition) && !empty($condition['status'])) {
    $conditions .= ' AND `status` = :status';
    $bind['status'] = $condition['status'];
  }
  $result = AdvertiseSchedule::updateAll($params, $conditions, $bind);
  return $result > 0 ? true : false;
}

方法2

/**
* 批量更新商品销量
* @param $params
* @return bool|int
* @throws \yii\db\Exception
*/
public function batchUpdateSalesNum($params)
{
  if (count($params) == 0 || !is_array($params)) {
    return false;
  }
  $sql = '';
  foreach ($params as $key => $value) {
    $sql .= 'UPDATE `morefun`.`mbb_goods` SET `sale_num` = `sale_num` -' . $value['amount'] . ' WHERE `id` =' . $value['goods_id'] . ';';
  }
  $result = Yii::$app->db->createCommand($sql)->execute();
  return $result == 1 ? true : false;
}

批量插入

/**
* 批量插入
* @param $params
* @return int
* @throws \yii\db\Exception
*/
public function batchAddShopClassConn($params)
{
  $connection = Yii::$app->db;
  $queryBuilder = $connection->queryBuilder;
  /*$sql = $queryBuilder->batchInsert('user', ['name', 'age'], [
    ['Tom', 30],
    ['Jane', 20],
    ['Linda', 25],
  ]);*/
  $sql = $queryBuilder->batchInsert(shopClassConn::tableName(),
    ['shop_id', 'class_id'], $params);
  return $connection->createCommand($sql)->execute();
}