MathPHP

Powerful Modern Math Library for PHP

MathPHP is the only library you need to integrate mathematical functions into your applications. It is a self-contained library in pure PHP with no external dependencies.

It is actively under development with development (0.y.z) releases.

Coverage Status
Build Status
License

Features

Setup

Add the library to your composer.json file in your project:

{
  "require": {
      "markrogoyski/math-php": "0.*"
  }
}

Use composer to install the library:

$ php composer.phar install

Composer will install MathPHP inside your vendor folder. Then you can add the following to your .php files to use the library with Autoloading.

require_once(__DIR__ . '/vendor/autoload.php');

Alternatively, use composer on the command line to require and install MathPHP:

$ php composer.phar require markrogoyski/math-php:0.*

Minimum Requirements

  • PHP 7

Usage

Algebra

use MathPHP\Algebra;

// Greatest common divisor (GCD)
$gcd = Algebra::gcd(8, 12);

// Extended greatest common divisor - gcd(a, b) = a*a' + b*b'
$gcd = Algebra::extendedGcd(12, 8); // returns array [gcd, a', b']

// Least common multiple (LCM)
$lcm = Algebra::lcm(5, 2);

// Factors of an integer
$factors = Algebra::factors(12); // returns [1, 2, 3, 4, 6, 12]

// Quadradic equation
list($a, $b, $c) = [1, 2, -8]; // x² + 2x - 8
list($x₁, $x₂)   = Algebra::quadradic($a, $b, $c);

// Cubic equation
list($a₃, $a₂, $a₁, $a₀) = [2, 9, 3, -4]; // 2x³ + 9x² + 3x -4
list($x₁, $x₂, $x₃)      = Algebra::cubic($a₃, $a₂, $a₁, $a₀);

// Quartic equation
list($a₄, $a₃, $a₂, $a₁, $a₀) = [1, -10, 35, -50, 24]; // z⁴ - 10z³ + 35z² - 50z + 24 = 0
list($z₁, $z₂, $z₃, $z₄)      = Algebra::quartic($a₄, $a₃, $a₂, $a₁, $a₀);

Arithmetic

use MathPHP\Arithmetic;

$³√x = Arithmetic::cubeRoot(-8); // -2

// Sum of digits
$digit_sum    = Arithmetic::digitSum(99):    // 18
$digital_root = Arithmetic::digitalRoot(99); // 9

// Equality of numbers within a tolerance
$x = 0.00000003458;
$y = 0.00000003455;
$ε = 0.0000000001;
$almostEqual = Arithmetic::almostEqual($x, $y, $ε); // true

// Copy sign
$magnitude = 5;
$sign      = -3;
$signed_magnitude = Arithmetic::copySign($magnitude, $sign); // -5

Finance

use MathPHP\Finance;

// Financial payment for a loan or annuity with compound interest
$rate          = 0.035 / 12; // 3.5% interest paid at the end of every month
$periods       = 30 * 12;    // 30-year mortgage
$present_value = 265000;     // Mortgage note of $265,000.00
$future_value  = 0;
$beginning     = false;      // Adjust the payment to the beginning or end of the period
$pmt           = Finance::pmt($rate, $periods, $present_value, $future_value, $beginning);

// Interest on a financial payment for a loan or annuity with compound interest.
$period = 1; // First payment period
$ipmt   = Finance::ipmt($rate, $period, $periods, $present_value, $future_value, $beginning);

// Principle on a financial payment for a loan or annuity with compound interest
$ppmt = Finance::ppmt($rate, $period, $periods, $present_value, $future_value = 0, $beginning);

// Number of payment periods of an annuity.
$periods = Finance::periods($rate, $payment, $present_value, $future_value, $beginning);

// Annual Equivalent Rate (AER) of an annual percentage rate (APR)
$nominal = 0.035; // APR 3.5% interest
$periods = 12;    // Compounded monthly
$aer     = Finance::aer($nominal, $periods);

// Annual nominal rate of an annual effective rate (AER)
$nomial = Finance::nominal($aer, $periods);

// Future value for a loan or annuity with compound interest
$payment = 1189.97;
$fv      = Finance::fv($rate, $periods, $payment, $present_value, $beginning)

// Present value for a loan or annuity with compound interest
$pv = Finance::pv($rate, $periods, $payment, $future_value, $beginning)

// Net present value of cash flows
$values = [-1000, 100, 200, 300, 400];
$npv    = Finance::npv($rate, $values);

// Interest rate per period of an annuity
$beginning = false; // Adjust the payment to the beginning or end of the period
$rate      = rate($periods, $payment, $present_value, $future_value, $beginning);

// Internal rate of return
$values = [-100, 50, 40, 30];
$irr    = Finance:irr($values); // Rate of return of an initial investment of $100 with returns of $50, $40, and $30

// Modified internal rate of return
$finance_rate      = 0.05; // 5% financing
$reinvestment_rate = 0.10; // reinvested at 10%
$mirr              = Finance:mirr($values, $finance_rate); // rate of return of an initial investment of $100 at 5% financing with returns of $50, $40, and $30 reinvested at 10%

// Discounted payback of an investment
$values  = [-1000, 100, 200, 300, 400, 500];
$rate    = 0.1;
$payback = Finance::payback($values, $rate); // The payback period of an investment with a $1,000 investment and future returns of $100, $200, $300, $400, $500 and a discount rate of 0.10

// Profitability index
$values              = [-100, 50, 50, 50];
$profitability_index = profitabilityIndex($values, $rate); // The profitability index of an initial $100 investment with future returns of $50, $50, $50 with a 10% discount rate

Functions – Map – Single Array

use MathPHP\Functions\Map;

$x = [1, 2, 3, 4];

$sums        = Map\Single::add($x, 2);      // [3, 4, 5, 6]
$differences = Map\Single::subtract($x, 1); // [0, 1, 2, 3]
$products    = Map\Single::multiply($x, 5); // [5, 10, 15, 20]
$quotients   = Map\Single::divide($x, 2);   // [0.5, 1, 1.5, 2]
$x²          = Map\Single::square($x);      // [1, 4, 9, 16]
$x³          = Map\Single::cube($x);        // [1, 8, 27, 64]
$x⁴          = Map\Single::pow($x, 4);      // [1, 16, 81, 256]
$√x          = Map\Single::sqrt($x);        // [1, 1.414, 1.732, 2]
$∣x∣         = Map\Single::abs($x);         // [1, 2, 3, 4]
$maxes       = Map\Single::max($x, 3);      // [3, 3, 3, 4]
$mins        = Map\Single::min($x, 3);      // [1, 2, 3, 3]

Functions – Map – Multiple Arrays

use MathPHP\Functions\Map;

$x = [10, 10, 10, 10];
$y = [1,   2,  5, 10];

// Map function against elements of two or more arrays, item by item (by item ...)
$sums        = Map\Multi::add($x, $y);      // [11, 12, 15, 20]
$differences = Map\Multi::subtract($x, $y); // [9, 8, 5, 0]
$products    = Map\Multi::multiply($x, $y); // [10, 20, 50, 100]
$quotients   = Map\Multi::divide($x, $y);   // [10, 5, 2, 1]
$maxes       = Map\Multi::max($x, $y);      // [10, 10, 10, 10]
$mins        = Map\Multi::mins($x, $y);     // [1, 2, 5, 10]

// All functions work on multiple arrays; not limited to just two
$x    = [10, 10, 10, 10];
$y    = [1,   2,  5, 10];
$z    = [4,   5,  6,  7];
$sums = Map\Multi::add($x, $y, $z); // [15, 17, 21, 27]

Functions – Special Functions

use MathPHP\Functions\Special;

// Gamma function Γ(z)
$z = 4;
$Γ = Special::gamma($z);          // Uses gamma definition for integers and half integers; uses Lanczos approximation for real numbers
$Γ = Special::gammaLanczos($z);   // Lanczos approximation
$Γ = Special::gammaStirling($z);  // Stirling approximation

// Incomplete gamma functions - γ(s,t), Γ(s,x)
list($x, $s) = [1, 2];
$γ = Special::lowerIncompleteGamma($x, $s); // same as γ
$γ = Special::γ($x, $s);                    // same as lowerIncompleteGamma
$Γ = Special::upperIncompleteGamma($x, $s);

// Beta function
list($x, $y) = [1, 2];
$β = Special::beta($x, $y); // same as β
$β = Special::β($x, $y);    // same as beta

// Incomplete beta functions
list($x, $a, $b) = [0.4, 2, 3];
$B  = Special::incompleteBeta($x, $a, $b);
$Iₓ = Special::regularizedIncompleteBeta($x, $a, $b);

// Multivariate beta function
$αs = [1, 2, 3];
$β  = Special::multivariateBeta($αs);

// Error function (Gauss error function)
$error = Special::errorFunction(2);              // same as erf
$error = Special::erf(2);                        // same as errorFunction
$error = Special::complementaryErrorFunction(2); // same as erfc
$error = Special::erfc(2);                       // same as complementaryErrorFunction

// Hypergeometric functions
$pFq = Special::generalizedHypergeometric($p, $q, $a, $b, $c, $z);
$₁F₁ = Special::confluentHypergeometric($a, $b, $z);
$₂F₁ = Special::hypergeometric($a, $b, $c, $z);

// Sign function (also known as signum or sgn)
$x    = 4;
$sign = Special::signum($x); // same as sgn
$sign = Special::sgn($x);    // same as signum

// Logistic function (logistic sigmoid function)
$x₀ = 2; // x-value of the sigmoid's midpoint
$L  = 3; // the curve's maximum value
$k  = 4; // the steepness of the curve
$x  = 5;
$logistic = Special::logistic($x₀, $L, $k, $x);

// Sigmoid function
$t = 2;
$sigmoid = Special::sigmoid($t);

// Softmax function
$?    = [1, 2, 3, 4, 1, 2, 3];
$σ⟮?⟯ⱼ = Special::softmax($?);

Information Theory – Entropy

use MathPHP\InformationTheory\Entropy;

// Probability distributions
$p = [0.2, 0.5, 0.3];
$q = [0.1, 0.4, 0.5];

// Shannon entropy
$bits  = Entropy::shannonEntropy($p);         // log₂
$nats  = Entropy::shannonNatEntropy($p);      // ln
$harts = Entropy::shannonHartleyEntropy($p);  // log₁₀

// Cross entropy
$H⟮p、q⟯ = Entropy::crossEntropy($p, $q);       // log₂

// Joint entropy
$P⟮x、y⟯ = [1/2, 1/4, 1/4, 0];
H⟮x、y⟯ = Entropy::jointEntropy($P⟮x、y⟯);        // log₂

// Rényi entropy
$α    = 0.5;
$Hₐ⟮X⟯ = Entropy::renyiEntropy($p, $α);         // log₂

// Perplexity
$perplexity = Entropy::perplexity($p);         // log₂

Linear Algebra – Matrix

use MathPHP\LinearAlgebra\Matrix;
use MathPHP\LinearAlgebra\MatrixFactory;

$matrix = [
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9],
];

// Matrix factory creates most appropriate matrix
$A = MatrixFactory::create($matrix);
$B = MatrixFactory::create($matrix);

// Matrix factory can create a matrix from an array of column vectors
use MathPHP\LinearAlgebra\Vector;
$X₁ = new Vector([1, 4, 7]);
$X₂ = new Vector([2, 5, 8]);
$X₃ = new Vector([3, 6, 9]);
$C  = MatrixFactory::create([$X₁, $X₂, $X₃]);

// Can also directly instantiate desired matrix class
$A = new Matrix($matrix);
$B = new SquareMatrix($matrix);

// Basic matrix data
$array = $A->getMatrix();
$rows  = $A->getM();      // number of rows
$cols  = $A->getN();      // number of columns

// Basic matrix elements (zero-based indexing)
$row = $A->getRow(2);
$col = $A->getColumn(2);
$Aᵢⱼ = $A->get(2, 2);
$Aᵢⱼ = $A[2][2];

// Other representations of matrix data
$vectors = $A->asVectors();                // array of column vectors
$D       = $A->getDiagonalElements();      // array of the diagonal elements
$d       = $A->getSuperdiagonalElements(); // array of the superdiagonal elements
$d       = $A->getSubdiagonalElements();   // array of the subdiagonal elements

// Row operations
list($mᵢ, $mⱼ, $k) = [1, 2, 5];
$R = $A->rowInterchange($mᵢ, $mⱼ);
$R = $A->rowMultiply($mᵢ, $k);     // Multiply row mᵢ by k
$R = $A->rowAdd($mᵢ, $mⱼ, $k);     // Add k * row mᵢ to row mⱼ
$R = $A->rowExclude($mᵢ);          // Exclude row $mᵢ

// Column operations
list($nᵢ, $nⱼ, $k) = [1, 2, 5];
$R = $A->columnInterchange($nᵢ, $nⱼ);
$R = $A->columnMultiply($nᵢ, $k);     // Multiply column nᵢ by k
$R = $A->columnAdd($nᵢ, $nⱼ, $k);     // Add k * column nᵢ to column nⱼ
$R = $A->columnExclude($nᵢ);          // Exclude column $nᵢ

// Matrix operations - return a new Matrix
$A+B  = $A->add($B);
$A⊕B   = $A->directSum($B);
$A⊕B   = $A->kroneckerSum($B);
$A−B   = $A->subtract($B);
$AB    = $A->multiply($B);
$2A   = $A->scalarMultiply(2);
$A/2  = $A->scalarDivide(2);
$−A    = $A->negate();
$A∘B   = $A->hadamardProduct($B);
$A⊗B   = $A->kroneckerProduct($B);
$Aᵀ   = $A->transpose();
$D    = $A->diagonal();
$⟮A∣B⟯  = $A->augment($B);
$⟮A∣I⟯  = $A->augmentIdentity();         // Augment with the identity matrix
$⟮A∣B⟯  = $A->augmentBelow($B);
$A⁻¹   = $A->inverse();
$Mᵢⱼ   = $A->minorMatrix($mᵢ, $nⱼ);     // Square matrix with row mᵢ and column nⱼ removed
$Mk    = $A->leadingPrincipalMinor($k); // kᵗʰ-order leading principal minor
$CM    = $A->cofactorMatrix();
$B     = $A->meanDeviation();
$S     = $A->covarianceMatrix();
$adj⟮A⟯ = $A->adjugate();

// Matrix operations - return a new Vector
$AB = $A->vectorMultiply($X₁);
$M  = $A->sampleMean();

// Matrix operations - return a value
$tr⟮A⟯   = $A->trace();
$|A|    = $a->det();              // Determinant
$Mᵢⱼ    = $A->minor($mᵢ, $nⱼ);    // First minor
$Cᵢⱼ    = $A->cofactor($mᵢ, $nⱼ);
$rank⟮A⟯ = $A->rank();

// Matrix norms - return a value
$‖A‖₁ = $A->oneNorm();
$‖A‖F = $A->frobeniusNorm(); // Hilbert–Schmidt norm
$‖A‖∞ = $A->infinityNorm();
$max  = $A->maxNorm();

// Matrix properties - return a bool
$bool = $A->isSquare();
$bool = $A->isSymmetric();
$bool = $A->isSkewSymmetric();
$bool = $A->isSingular();
$bool = $A->isNonsingular();           // Same as isInvertible
$bool = $A->isInvertible();            // Same as isNonsingular
$bool = $A->isPositiveDefinite();
$bool = $A->isPositiveSemidefinite();
$bool = $A->isNegativeDefinite();
$bool = $A->isNegativeSemidefinite();
$bool = $A->isLowerTriangular();
$bool = $A->isUpperTriangular();
$bool = $A->isTriangular();
$bool = $A->isDiagonal();
$bool = $A->isUpperBidiagonal();
$bool = $A->isLowerBidiagonal();
$bool = $A->isBidiagonal();
$bool = $A->isTridiagonal();
$bool = $A->isUpperHessenberg();
$bool = $A->isLowerHessenberg();
$bool = $A->isInvolutory();
$bool = $A->isSignature();
$bool = $A->isRef();
$bool = $A->isRref();

// Matrix decompositions
$ref  = $A->ref();                   // Row echelon form
$rref = $A->rref();                  // Reduced row echelon form
$PLU  = $A->luDecomposition();       // Returns array of Matrices [L, U, P]; P is permutation matrix
$LU   = $A->croutDecomposition();    // Returns array of Matrices [L, U]
$L    = $A->choleskyDecomposition(); // Returns lower triangular matrix L of A = LLᵀ

// Solve a linear system of equations: Ax = b
$b = new Vector(1, 2, 3);
$x = $A->solve($b);

// Map a function over each element of the Matrix
$func = function($x) {
    return $x * 2;
};
$R = $A->map($func);

// Print a matrix
print($A);
/*
 [1, 2, 3]
 [2, 3, 4]
 [3, 4, 5]
 */

// Specialized matrices
list($m, $n, $k)              = [4, 4, 2];
$identity_matrix              = MatrixFactory::identity($n);             // Ones on the main diagonal
$zero_matrix                  = MatrixFactory::zero($m, $n);             // All zeros
$ones_matrix                  = MatrixFactory::one($m, $n);              // All ones
$eye_matrix                   = MatrixFactory::eye($m, $n, $k);          // Ones (or other value) on the k-th diagonal
$exchange_matrix              = MatrixFactory::exchange($n);             // Ones on the reverse diagonal
$downshift_permutation_matrix = MatrixFactory::downshiftPermutation($n); // Permutation matrix that pushes the components of a vector down one notch with wraparound
$upshift_permutation_matrix   = MatrixFactory::upshiftPermutation($n);   // Permutation matrix that pushes the components of a vector up one notch with wraparound
$hilbert_matrix               = MatrixFactory::hilbert($n);              // Square matrix with entries being the unit fractions

// Vandermonde matrix
$V = MatrixFactory::create([1, 2, 3], 4); // 4 x 3 Vandermonde matrix
$V = new VandermondeMatrix([1, 2, 3], 4); // Same as using MatrixFactory

// Diagonal matrix
$D = MatrixFactory::create([1, 2, 3]); // 3 x 3 diagonal matrix with zeros above and below the diagonal
$D = new DiagonalMatrix([1, 2, 3]);    // Same as using MatrixFactory

// PHP Predefined Interfaces
$json = json_encode($A); // JsonSerializable
$Aᵢⱼ  = $A[$mᵢ][$nⱼ];    // ArrayAccess

Linear Algebra – Vector

use MathPHP\LinearAlgebra\Vector;

// Vector
$A = new Vector([1, 2]);
$B = new Vector([2, 4]);

// Basic vector data
$array = $A->getVector();
$n     = $A->getN();           // number of elements
$M     = $A->asColumnMatrix(); // Vector as an nx1 matrix
$M     = $A->asRowMatrix();    // Vector as a 1xn matrix

// Basic vector elements (zero-based indexing)
$item = $A->get(1);

// Vector operations - return a value
$sum  = $A->sum();
$│A│  = $A->length();           // same as l2Norm
$A⋅B  = $A->dotProduct($B);     // same as innerProduct
$A⋅B  = $A->innerProduct($B);   // same as dotProduct
$A⊥⋅B = $A->perpDotProduct($B);

// Vector operations - return a Vector or Matrix
$kA    = $A->scalarMultiply($k);
$A+B  = $A->add($B);
$A−B   = $A->subtract($B);
$A/k  = $A->scalarDivide($k);
$A⨂B  = $A->outerProduct($B);  // Same as direct product
$AB    = $A->directProduct($B); // Same as outer product
$AxB   = $A->crossProduct($B);
$A⨂B   = $A->kroneckerProduct($B);
$Â     = $A->normalize();
$A⊥    = $A->perpendicular();
$projᵇA = $A->projection($B);   // projection of A onto B
$perpᵇA = $A->perp($B);         // perpendicular of A on B

// Vector norms - return a value
$l₁norm = $A->l1Norm();
$l²norm = $A->l2Norm();
$pnorm  = $A->pNorm();
$max    = $A->maxNorm();

// Print a vector
print($A); // [1, 2]

// PHP Predefined Interfaces
$n    = count($A);       // Countable
$json = json_encode($A); // JsonSerializable
$Aᵢ   = $A[$i];          // ArrayAccess

Number – Complex Numbers

use MathPHP\Number\Complex;

list($r, $i) = [2, 4];
$complex     = new Complex($r, $i);

// Accessors
$r = $complex->r;
$i = $complex->i;

// Unary functions
$conjugate     = $complex->complexConjugate();
$│c│           = $complex->abs();     // absolute value (modulus)
$arg⟮c⟯         = $complex->arg();     // argument (phase)
$√c            = $complex->sqrt();    // positive square root
list($z₁, $z₂) = $complex->roots();
$c⁻¹           = $complex->inverse();
$−c            = $complex->negate();
$polar         = $complex->polarForm();

// Binary functions
$c+c = $complex->add($complex);
$c−c  = $complex->subtract($complex);
$c×c  = $complex->multiply($complex);
$c/c = $complex->divide($complex);

// Other functions
$bool   = $complex->equals($complex);
$string = (string) $complex;

Number – Rational Numbers

use MathPHP\Number\Rational;

$whole       = 0;
$numerator   = 2;
$denominator = 3;

$rational = new Rational($whole, $numerator, $denominator); // ²/₃

// Unary functions
$│rational│ = $rational->abs();

// Binary functions
$sum      = $rational->add($rational);
$diff     = $rational->subtract($rational);
$product  = $rational->multiply($rational);
$quotient = $rational->divide($rational);

// Other functions
$bool   = $rational->equals($rational);
$float  = $rational->toFloat();
$string = (string) $rational;

Number Theory – Integers

use MathPHP\NumberTheory\Integer;

$n = 225;

// Prime factorization
$factors = Integer::primeFactorization($n);

// Perfect powers
$bool        = Integer::isPerfectPower($n);
list($m, $k) = Integer::perfectPower($n);

// Coprime
$bool = Integer::coprime(4, 35);

// Even and odd
$bool = Integer::isEven($n);
$bool = Integer::isOdd($n);

Numerical Analysis – Interpolation

use MathPHP\NumericalAnalysis\Interpolation;

// Interpolation is a method of constructing new data points with the range
// of a discrete set of known data points.
// Each integration method can take input in two ways:
// 1) As a set of points (inputs and outputs of a function)
// 2) As a callback function, and the number of function evaluations to
// perform on an interval between a start and end point.

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];

// Lagrange Polynomial
// Returns a function p(x) of x
$p = Interpolation\LagrangePolynomial::interpolate($points);                // input as a set of points
$p = Interpolation\LagrangePolynomial::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Nevilles Method
// More accurate than Lagrange Polynomial Interpolation given the same input
// Returns the evaluation of the interpolating polynomial at the $target point
$target = 2;
$result = Interpolation\NevillesMethod::interpolate($target, $points);                // input as a set of points
$result = Interpolation\NevillesMethod::interpolate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Newton Polynomial (Forward)
// Returns a function p(x) of x
$p = Interpolation\NewtonPolynomialForward::interpolate($points);                // input as a set of points
$p = Interpolation\NewtonPolynomialForward::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Natural Cubic Spline
// Returns a piecewise polynomial p(x)
$p = Interpolation\NaturalCubicSpline::interpolate($points);                // input as a set of points
$p = Interpolation\NaturalCubicSpline::interpolate($f⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

// Clamped Cubic Spline
// Returns a piecewise polynomial p(x)

// Input as a set of points
$points = [[0, 1, 0], [1, 4, -1], [2, 9, 4], [3, 16, 0]];

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
$f’⟮x⟯ = function ($x) {
    return 2*$x + 2;
};
list($start, $end, $n) = [0, 3, 4];

$p = Interpolation\ClampedCubicSpline::interpolate($points);                // input as a set of points
$p = Interpolation\ClampedCubicSpline::interpolate($f⟮x⟯, $f’⟮x⟯, $start, $end, $n); // input as a callback function

$p(0) // 1
$p(3) // 16

Numerical Analysis – Numerical Differentiation

use MathPHP\NumericalAnalysis\NumericalDifferentiation;

// Numerical Differentiation approximates the derivative of a function.
// Each Differentiation method can take input in two ways:
// 1) As a set of points (inputs and outputs of a function)
// 2) As a callback function, and the number of function evaluations to
// perform on an interval between a start and end point.

// Input as a callback function
$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};

// Three Point Formula
// Returns an approximation for the derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9]];

$target = 0;
list($start, $end, $n) = [0, 2, 3];
$derivative = NumericalDifferentiation\ThreePointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\ThreePointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Five Point Formula
// Returns an approximation for the derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4, 25]];

$target = 0;
list($start, $end, $n) = [0, 4, 5];
$derivative = NumericalDifferentiation\FivePointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\FivePointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

// Second Derivative Midpoint Formula
// Returns an approximation for the second derivative of our input at our target

// Input as a set of points
$points = [[0, 1], [1, 4], [2, 9];

$target = 1;
list($start, $end, $n) = [0, 2, 3];
$derivative = NumericalDifferentiation\SecondDerivativeMidpointFormula::differentiate($target, $points);                // input as a set of points
$derivative = NumericalDifferentiation\SecondDerivativeMidpointFormula::differentiate($target, $f⟮x⟯, $start, $end, $n); // input as a callback function

Numerical Analysis – Numerical Integration

use MathPHP\NumericalAnalysis\NumericalIntegration;

// Numerical integration approximates the definite integral of a function.
// Each integration method can take input in two ways:
// 1) As a set of points (inputs and outputs of a function)
// 2) As a callback function, and the number of function evaluations to
// perform on an interval between a start and end point.

// Trapezoidal Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\TrapezoidalRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\TrapezoidalRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Simpsons Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4,3]];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 5];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Simpsons 3/8 Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsThreeEighthsRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 5];
$∫f⟮x⟯dx = NumericalIntegration\SimpsonsThreeEighthsRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Booles Rule (closed Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16], [4, 25]];
$∫f⟮x⟯dx = NumericalIntegration\BoolesRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**3 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 4, 5];
$∫f⟮x⟯dx = NumericalIntegration\BoolesRuleRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Rectangle Method (open Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\RectangleMethod::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\RectangleMethod::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

// Midpoint Rule (open Newton-Cotes formula)
$points = [[0, 1], [1, 4], [2, 9], [3, 16]];
$∫f⟮x⟯dx = NumericalIntegration\MidpointRule::approximate($points); // input as a set of points

$f⟮x⟯ = function ($x) {
    return $x**2 + 2 * $x + 1;
};
list($start, $end, $n) = [0, 3, 4];
$∫f⟮x⟯dx = NumericalIntegration\MidpointRule::approximate($f⟮x⟯, $start, $end, $n); // input as a callback function

Numerical Analysis – Root Finding

use MathPHP\NumericalAnalysis\RootFinding;

// Root-finding methods solve for a root of a polynomial.

// f(x) = x⁴ + 8x³ -13x² -92x + 96
$f⟮x⟯ = function($x) {
    return $x**4 + 8 * $x**3 - 13 * $x**2 - 92 * $x + 96;
};

// Newton's Method
$args     = [-4.1];  // Parameters to pass to callback function (initial guess, other parameters)
$target   = 0;       // Value of f(x) we a trying to solve for
$tol      = 0.00001; // Tolerance; how close to the actual solution we would like
$position = 0;       // Which element in the $args array will be changed; also serves as initial guess. Defaults to 0.
$x        = RootFinding\NewtonsMethod::solve($f⟮x⟯, $args, $target, $tol, $position); // Solve for x where f(x) = $target

// Secant Method
$p₀  = -1;      // First initial approximation
$p₁  = 2;       // Second initial approximation
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\SecantMethod::solve($f⟮x⟯, $p₀, $p₁, $tol); // Solve for x where f(x) = 0

// Bisection Method
$a   = 2;       // The start of the interval which contains a root
$b   = 5;       // The end of the interval which contains a root
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\BisectionMethod::solve($f⟮x⟯, $a, $b, $tol); // Solve for x where f(x) = 0

// Fixed-Point Iteration
// f(x) = x⁴ + 8x³ -13x² -92x + 96
// Rewrite f(x) = 0 as (x⁴ + 8x³ -13x² + 96)/92 = x
// Thus, g(x) = (x⁴ + 8x³ -13x² + 96)/92
$g⟮x⟯ = function($x) {
    return ($x**4 + 8 * $x**3 - 13 * $x**2 + 96)/92;
};
$a   = 0;       // The start of the interval which contains a root
$b   = 2;       // The end of the interval which contains a root
$p   = 0;       // The initial guess for our root
$tol = 0.00001; // Tolerance; how close to the actual solution we would like
$x   = RootFinding\FixedPointIteration::solve($g⟮x⟯, $a, $b, $p, $tol); // Solve for x where f(x) = 0

Probability – Combinatorics

use MathPHP\Probability\Combinatorics;

list($n, $x, $k) = [10, 3, 4];

// Factorials
$n!  = Combinatorics::factorial($n);
$n‼︎   = Combinatorics::doubleFactorial($n);
$x⁽ⁿ⁾ = Combinatorics::risingFactorial($x, $n);
$x₍ᵢ₎ = Combinatorics::fallingFactorial($x, $n);
$!n  = Combinatorics::subfactorial($n);

// Permutations
$nPn = Combinatorics::permutations($n);     // Permutations of n things, taken n at a time (same as factorial)
$nPk = Combinatorics::permutations($n, $k); // Permutations of n things, taking only k of them

// Combinations
$nCk  = Combinatorics::combinations($n, $k);                            // n choose k without repetition
$nC′k = Combinatorics::combinations($n, $k, Combinatorics::REPETITION); // n choose k with repetition (REPETITION const = true)

// Central binomial coefficient
$cbc = Combinatorics::centralBinomialCoefficient($n);

// Catalan number
$Cn = Combinatorics::catalanNumber($n);

// Lah number
$L⟮n、k⟯ = Combinatorics::lahNumber($n, $k)

// Multinomial coefficient
$groups    = [5, 2, 3];
$divisions = Combinatorics::multinomial($groups);

Probability – Continuous Distributions

use MathPHP\Probability\Distribution\Continuous;

// Beta distribution
$α    = 1; // shape parameter
$β    = 1; // shape parameter
$x    = 2;
$beta = new Continuous\Beta($α, $β);
$pdf  = $beta->pdf($x);
$cdf  = $beta->cdf($x);
$μ    = $beta->mean();

// Cauchy distribution
$x₀     = 2; // location parameter
$γ      = 3; // scale parameter
$x      = 1;
$cauchy = new Continuous\Cauchy(x₀, γ);
$pdf    = $cauchy->pdf(x);
$cdf    = $cauchy->cdf(x);

// χ²-distribution (Chi-Squared)
$k   = 2; // degrees of freedom
$x   = 1;
$χ²  = new Continuous\ChiSquared($k);
$pdf = $χ²->pdf($x);
$cdf = $χ²->cdf($x);

// Dirac delta distribution
$x     = 1;
$dirac = new Continuous\DiracDelta();
$pdf   = $dirac->pdf($x);
$cdf   = $dirac->cdf($x);

// Exponential distribution
$λ           = 1; // rate parameter
$x           = 2;
$exponential = new Continuous\Exponential($λ);
$pdf         = $exponential->pdf($x);
$cdf         = $exponential->cdf($x);
$μ           = $exponential->mean();

// F-distribution
$d₁  = 3; // degree of freedom v1
$d₂  = 4; // degree of freedom v2
$x   = 2;
$f   = new Continuous\F($d₁, $d₂);
$pdf = $f->pdf($x);
$cdf = $f->cdf($x);
$μ   = $f->mean();

// Gamma distribution
$k     = 2; // shape parameter
$θ     = 3; // scale parameter
$x     = 4;
$gamma = new Continuous\Gamma($k, $θ);
$pdf   = $gamma->pdf($x);
$cdf   = $gamma->cdf($x);
$μ     = $gamma->mean();

// Laplace distribution
$μ       = 1;   // location parameter
$b       = 1.5; // scale parameter (diversity)
$x       = 1;
$laplace = new Continuous\Laplace($μ, $b);
$pdf     = $laplace->pdf($x);
$cdf     = $laplace->cdf($x);

// Logistic distribution
$μ        = 2;   // location parameter
$s        = 1.5; // scale parameter
$x        = 3;
$logistic = new Continuous\Logistic($μ, $s);
$pdf      = $logistic->pdf($x);
$cdf      = $logistic->cdf($x);

// Log-logistic distribution (Fisk distribution)
$α           = 1; // scale parameter
$β           = 1; // shape parameter
$x           = 2;
$logLogistic = new Continuous\LogLogistic($α, $β);
$pdf         = $logLogistic->pdf($x);
$cdf         = $logLogistic->cdf($x);
$μ           = $logLogistic->mean();

// Log-normal distribution
$μ         = 6;   // scale parameter
$σ         = 2;   // location parameter
$x         = 4.3;
$logNormal = new Continuous\LogNormal($μ, $σ);
$pdf       = $logNormal->pdf($x);
$cdf       = $logNormal->cdf($x);
$mean      = $logNormal->mean();

// Noncentral T distribution
$ν            = 50; // degrees of freedom
$μ            = 10; // noncentrality parameter
$x            = 8;
$noncenetralT = new Continuous\NoncentralT($ν, $μ);
$pdf          = $noncenetralT->pdf($x);
$cdf          = $noncenetralT->cdf($x);
$mean         = $noncenetralT->mean();

// Normal distribution
$σ      = 1;
$μ      = 0;
$x      = 2;
$normal = new Continuous\Normal($μ, $σ);
$pdf    = $normal->pdf($x);
$cdf    = $normal->cdf($x);

// Pareto distribution
$a      = 1; // shape parameter
$b      = 1; // scale parameter
$x      = 2;
$pareto = new Continuous\Pareto($a, $b);
$pdf    = $pareto->pdf($x);
$cdf    = $pareto->cdf($x);
$μ      = $pareto->mean();

// Standard normal distribution
$z              = 2;
$standardNormal = new Continuous\StandardNormal();
$pdf            = $standardNormal->pdf($z);
$cdf            = $standardNormal->cdf($z);

// Student's t-distribution
$ν        = 3;   // degrees of freedom
$p        = 0.4; // proportion of area
$x        = 2;
$studentT = new Continuous\StudentT::pdf($ν);
$pdf      = $studentT->pdf($x);
$cdf      = $studentT->cdf($x);
$t        = $studentT->inverse2Tails($p);  // t such that the area greater than t and the area beneath -t is p

// Uniform distribution
$a       = 1; // lower boundary of the distribution
$b       = 4; // upper boundary of the distribution
$x       = 2;
$uniform = new Continuous\Uniform($a, $b);
$pdf     = $uniform->pdf($x);
$cdf     = $uniform->cdf($x);
$μ       = $uniform->mean(b);

// Weibull distribution
$k       = 1; // shape parameter
$λ       = 2; // scale parameter
$x       = 2;
$weibull = new Continuous\Weibull($k, $λ);
$pdf     = $weibull->pdf($x);
$cdf     = $weibull->cdf($x);
$μ       = $weibull->mean();

// Other CDFs - All continuous distributions
// Replace '$distribution' with desired distribution.
$inv_cdf = $distribution->inverse($target);   // Inverse CDF of the distribution
$between = $distribution->between($x₁, $x₂);  // Probability of being between two points, x₁ and x₂
$outside = $distribution->outside($x₁, $x);   // Probability of being between below x₁ and above x₂
$above   = $distribution->above($x);          // Probability of being above x to ∞

// Random Number Generator
$random  = $distribution->rand();  // A random number with a given distribution

Probability – Discrete Distributions

use MathPHP\Probability\Distribution\Discrete;

// Bernoulli distribution (special case of binomial where n = 1)
$p         = 0.3;
$k         = 0;
$bernoulli = new Discrete\Bernoulli($p);
$pmf       = $bernoulli->pmf($k);
$cdf       = $bernoulli->cdf($k);

// Binomial distribution
$n        = 2;   // number of events
$p        = 0.5; // probability of success
$r        = 1;   // number of successful events
$binomial = new Discrete\Binomial($n, $p);
$pmf      = $binomial->pmf($r);
$cdf      = $binomial->cdf($r);

// Categorical distribution
$k             = 3;                                    // number of categories
$probabilities = ['a' => 0.3, 'b' => 0.2, 'c' => 0.5]; // probabilities for categorices a, b, and c
$categorical   = new Discrete\Categorical($k, $probabilities);
$pmf_a         = $categorical->pmf('a');
$mode          = $categorical->mode();

// Geometric distribution (failures before the first success)
$p         = 0.5; // success probability
$k         = 2;   // number of trials
$geometric = new Discrete\Geometric($p);
$pmf       = $geometric->pmf($k);
$cdf       = $geometric->cdf($k);

// Hypergeometric distribution
$N        = 50; // population size
$K        = 5;  // number of success states in the population
$n        = 10; // number of draws
$k        = 4;  // number of observed successes
$hypergeo = new Discrete\Hypergeometric($N, $K, $n);
$pmf      = $hypergeo->pmf($k);
$cdf      = $hypergeo->cdf($k);
$μ        = $hypergeo->mean();

// Multinomial distribution
$frequencies   = [7, 2, 3];
$probabilities = [0.40, 0.35, 0.25];
$multinomial   = new Discrete\Multinomial($probabilities);
$pmf           = $multinomial->pmf($frequencies);

// Negative binomial distribution (Pascal)
$r                = 1;   // number of successful events
$P                = 0.5; // probability of success on an individual trial
$x                = 2;   // number of trials required to produce r successes
$negativeBinomial = new Discrete\NegativeBinomial($r, $p);
$pmf              = $negativeBinomial->pmf($x);

// Pascal distribution (Negative binomial)
$r      = 1;   // number of successful events
$P      = 0.5; // probability of success on an individual trial
$x      = 2;   // number of trials required to produce r successes
$pascal = new Discrete\Pascal($r, $p);
$pmf    = $pascal->pmf($x);

// Poisson distribution
$λ       = 2; // average number of successful events per interval
$k       = 3; // events in the interval
$poisson = new Discrete\Poisson($λ);
$pmf     = $poisson->pmf($k);
$cdf     = $poisson->cdf($k);

// Shifted geometric distribution (probability to get one success)
$p                = 0.5; // success probability
$k                = 2;   // number of trials
$shiftedGeometric = new Discrete\ShiftedGeometric($p);
$pmf              = $shiftedGeometric->pmf($k);
$cdf              = $shiftedGeometric->cdf($k);

// Uniform distribution
$a       = 1; // lower boundary of the distribution
$b       = 4; // upper boundary of the distribution
$k       = 2; // percentile
$uniform = new Discrete\Uniform($a, $b);
$pmf     = $uniform->pmf();
$cdf     = $uniform->cdf($k);
$μ       = $uniform->mean();

Probability – Multivariate Distributions

use MathPHP\Probability\Distribution\Multivariate;

// Dirichlet distribution
$αs        = [1, 2, 3];
$xs        = [0.07255081, 0.27811903, 0.64933016];
$dirichlet = new Multivariate\Dirichlet($αs);
$pdf       = $dirichlet->pdf($xs);

// Normal distribution
$μ      = [1, 1.1];
$∑      = MatrixFactory::create([
    [1, 0],
    [0, 1],
]);
$X      = [0.7, 1.4];
$normal = new Multivariate\Normal($μ, $∑);
$pdf    = $normal->pdf($X);

Probability – Distribution Tables

use MathPHP\Probability\Distribution\Table;

// Provided solely for completeness' sake.
// It is statistics tradition to provide these tables.
// MathPHP has dynamic distribution CDF functions you can use instead.

// Standard Normal Table (Z Table)
$table       = Table\StandardNormal::Z_SCORES;
$probability = $table[1.5][0];                 // Value for Z of 1.50

// t Distribution Tables
$table   = Table\TDistribution::ONE_SIDED_CONFIDENCE_LEVEL;
$table   = Table\TDistribution::TWO_SIDED_CONFIDENCE_LEVEL;
$ν       = 5;  // degrees of freedom
$cl      = 99; // confidence level
$t       = $table[$ν][$cl];

// t Distribution Tables
$table = Table\TDistribution::ONE_SIDED_ALPHA;
$table = Table\TDistribution::TWO_SIDED_ALPHA;
$ν     = 5;     // degrees of freedom
$α     = 0.001; // alpha value
$t     = $table[$ν][$α];

// χ² Distribution Table
$table = Table\ChiSquared::CHI_SQUARED_SCORES;
$df    = 2;    // degrees of freedom
$p     = 0.05; // P value
$χ²    = $table[$df][$p];

Sequences – Basic

use MathPHP\Sequence\Basic;

$n = 5; // Number of elements in the sequence

// Arithmetic progression
$d           = 2;  // Difference between the elements of the sequence
$a₁          = 1;  // Starting number for the sequence
$progression = Basic::arithmeticProgression($n, $d, $a₁);
// [1, 3, 5, 7, 9] - Indexed from 1

// Geometric progression (arⁿ⁻¹)
$a           = 2; // Scalar value
$r           = 3; // Common ratio
$progression = Basic::geometricProgression($n, $a, $r);
// [2(3)⁰, 2(3)¹, 2(3)², 2(3)³] = [2, 6, 18, 54] - Indexed from 1

// Square numbers (n²)
$squares = Basic::squareNumber($n);
// [0², 1², 2², 3², 4²] = [0, 1, 4, 9, 16] - Indexed from 0

// Cubic numbers (n³)
$cubes = Basic::cubicNumber($n);
// [0³, 1³, 2³, 3³, 4³] = [0, 1, 8, 27, 64] - Indexed from 0

// Powers of 2 (2ⁿ)
$po2 = Basic::powersOfTwo($n);
// [2⁰, 2¹, 2², 2³, 2⁴] = [1, 2, 4, 8, 16] - Indexed from 0

// Powers of 10 (10ⁿ)
$po10 = Basic::powersOfTen($n);
// [10⁰, 10¹, 10², 10³, 10⁴] = [1, 10, 100, 1000, 10000] - Indexed from 0

// Factorial (n!)
$fact = Basic::factorial($n);
// [0!, 1!, 2!, 3!, 4!] = [1, 1, 2, 6, 24] - Indexed from 0

// Digit sum
$digit_sum = Basic::digitSum($n);
// [0, 1, 2, 3, 4] - Indexed from 0

// Digital root
$digit_root = Basic::digitalRoot($n);
// [0, 1, 2, 3, 4] - Indexed from 0

Sequences – Advanced

use MathPHP\Sequence\Advanced;

$n = 6; // Number of elements in the sequence

// Fibonacci (Fᵢ = Fᵢ₋₁ + Fᵢ₋₂)
$fib = Advanced::fibonacci($n);
// [0, 1, 1, 2, 3, 5] - Indexed from 0

// Lucas numbers
$lucas = Advanced::lucasNumber($n);
// [2, 1, 3, 4, 7, 11] - Indexed from 0

// Pell numbers
$pell = Advanced::pellNumber($n);
// [0, 1, 2, 5, 12, 29] - Indexed from 0

// Triangular numbers (figurate number)
$triangles = Advanced::triangularNumber($n);
// [1, 3, 6, 10, 15, 21] - Indexed from 1

// Pentagonal numbers (figurate number)
$pentagons = Advanced::pentagonalNumber($n);
// [1, 5, 12, 22, 35, 51] - Indexed from 1

// Hexagonal numbers (figurate number)
$hexagons = Advanced::hexagonalNumber($n);
// [1, 6, 15, 28, 45, 66] - Indexed from 1

// Heptagonal numbers (figurate number)
$hexagons = Advanced::heptagonalNumber($n);
// [1, 4, 7, 13, 18, 27] - Indexed from 1

// Look-and-say sequence (describe the previous term!)
$look_and_say = Advanced::lookAndSay($n);
// ['1', '11', '21', '1211', '111221', '312211'] - Indexed from 1

// Lazy caterer's sequence (central polygonal numbers)
$lazy_caterer = Advanced::lazyCaterers($n);
// [1, 2, 4, 7, 11, 16] - Indexed from 0

// Magic squares series (magic constants; magic sums)
$magic_squares = Advanced::magicSquares($n);
// [0, 1, 5, 15, 34, 65] - Indexed from 0

// Perfect powers sequence
$perfect_powers = Advanced::perfectPowers($n);
// [4, 8, 9, 16, 25, 27] - Indexed from 0

// Not perfect powers sequence
$not_perfect_powers = Advanced::notPerfectPowers($n);
// [2, 3, 5, 6, 7, 10] - Indexed from 0

// Prime numbers up to n (n is not the number of elements in the sequence)
$primes = Advanced::primesUpTo(30);
// [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] - Indexed from 0

Set Theory

use MathPHP\SetTheory\Set;
use MathPHP\SetTheory\ImmutableSet;

// Sets and immutable sets
$A = new Set([1, 2, 3]);          // Can add and remove members
$B = new ImmutableSet([3, 4, 5]); // Cannot modify set once created

// Basic set data
$set         = $A->asArray();
$cardinality = $A->length();
$bool        = $A->isEmpty();

// Set membership
$true = $A->isMember(2);
$true = $A->isNotMember(8);

// Add and remove members
$A->add(4);
$A->add(new Set(['a', 'b']));
$A->addMulti([5, 6, 7]);
$A->remove(7);
$A->removeMulti([5, 6]);
$A->clear();

// Set properties against other sets - return boolean
$bool = $A->isDisjoint($B);
$bool = $A->isSubset($B);         // A ⊆ B
$bool = $A->isProperSubset($B);   // A ⊆ B & A ≠ B
$bool = $A->isSuperset($B);       // A ⊇ B
$bool = $A->isProperSuperset($B); // A ⊇ B & A ≠ B

// Set operations with other sets - return a new Set
$A∪B  = $A->union($B);
$A∩B  = $A->intersect($B);
$A\B = $A->difference($B);          // relative complement
$AΔB  = $A->symmetricDifference($B);
$A×B  = $A->cartesianProduct($B);

// Other set operations
$P⟮A⟯ = $A->powerSet();
$C   = $A->copy();

// Print a set
print($A); // Set{1, 2, 3, 4, Set{a, b}}

// PHP Interfaces
$n = count($A);                 // Countable
foreach ($A as $member) { ... } // Iterator

// Fluent interface
$A->add(5)->add(6)->remove(4)->addMulti([7, 8, 9]);

Statistics – ANOVA

use MathPHP\Statistics\ANOVA;

// One-way ANOVA
$sample1 = [1, 2, 3];
$sample2 = [3, 4, 5];
$sample3 = [5, 6, 7];
   ⋮            ⋮

$anova = ANOVA::oneWay($sample1, $sample2, $sample3);
print_r($anova);
/* Array (
 [ANOVA] => Array ( // ANOVA hypothesis test summary data
 [treatment] => Array (
 [SS] => 24 // Sum of squares (between)
 [df] => 2 // Degrees of freedom
 [MS] => 12 // Mean squares
 [F] => 12 // Test statistic
 [P] => 0.008 // P value
 )
 [error] => Array (
 [SS] => 6 // Sum of squares (within)
 [df] => 6 // Degrees of freedom
 [MS] => 1 // Mean squares
 )
 [total] => Array (
 [SS] => 30 // Sum of squares (total)
 [df] => 8 // Degrees of freedom
 )
 )
 [total_summary] => Array ( // Total summary data
 [n] => 9
 [sum] => 36
 [mean] => 4
 [SS] => 174
 [variance] => 3.75
 [sd] => 1.9364916731037
 [sem] => 0.6454972243679
 )
 [data_summary] => Array ( // Data summary (each input sample)
 [0] => Array ([n] => 3 [sum] => 6 [mean] => 2 [SS] => 14 [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
 [1] => Array ([n] => 3 [sum] => 12 [mean] => 4 [SS] => 50 [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
 [2] => Array ([n] => 3 [sum] => 18 [mean] => 6 [SS] => 110 [variance] => 1 [sd] => 1 [sem] => 0.57735026918963)
 )
) */

// Two-way ANOVA
/* | Factor B₁ | Factor B₂ | Factor B₃ | ⋯
Factor A₁ | 4, 6, 8 | 6, 6, 9 | 8, 9, 13 | ⋯
Factor A₂ | 4, 8, 9 | 7, 10, 13 | 12, 14, 16| ⋯
 ⋮ ⋮ ⋮ ⋮ */
$factorA₁ = [
  [4, 6, 8],    // Factor B₁
  [6, 6, 9],    // Factor B₂
  [8, 9, 13],   // Factor B₃
];
$factorA₂ = [
  [4, 8, 9],    // Factor B₁
  [7, 10, 13],  // Factor B₂
  [12, 14, 16], // Factor B₃
];
       ⋮

$anova = ANOVA::twoWay($factorA₁, $factorA₂);
print_r($anova);
/* Array (
 [ANOVA] => Array ( // ANOVA hypothesis test summary data
 [factorA] => Array (
 [SS] => 32 // Sum of squares
 [df] => 1 // Degrees of freedom
 [MS] => 32 // Mean squares
 [F] => 5.6470588235294 // Test statistic
 [P] => 0.034994350619895 // P value
 )
 [factorB] => Array (
 [SS] => 93 // Sum of squares
 [df] => 2 // Degrees of freedom
 [MS] => 46.5 // Mean squares
 [F] => 8.2058823529412 // Test statistic
 [P] => 0.0056767297582031 // P value
 )
 [interaction] => Array (
 [SS] => 7 // Sum of squares
 [df] => 2 // Degrees of freedom
 [MS] => 3.5 // Mean squares
 [F] => 0.61764705882353 // Test statistic
 [P] => 0.5555023440712 // P value
 )
 [error] => Array (
 [SS] => 68 // Sum of squares (within)
 [df] => 12 // Degrees of freedom
 [MS] => 5.6666666666667 // Mean squares
 )
 [total] => Array (
 [SS] => 200 // Sum of squares (total)
 [df] => 17 // Degrees of freedom
 )
 )
 [total_summary] => Array ( // Total summary data
 [n] => 18
 [sum] => 162
 [mean] => 9
 [SS] => 1658
 [variance] => 11.764705882353
 [sd] => 3.4299717028502
 [sem] => 0.80845208345444
 )
 [summary_factorA] => Array ( ... ) // Summary data of factor A
 [summary_factorB] => Array ( ... ) // Summary data of factor B
 [summary_interaction] => Array ( ... ) // Summary data of interactions of factors A and B
) */

Statistics – Averages

use MathPHP\Statistics\Average;

$numbers = [13, 18, 13, 14, 13, 16, 14, 21, 13];

// Mean, median, mode
$mean   = Average::mean($numbers);
$median = Average::median($numbers);
$mode   = Average::mode($numbers); // Returns an array — may be multimodal

// Weighted mean
$weights       = [12, 1, 23, 6, 12, 26, 21, 12, 1];
$weighted_mean = Average::weightedMean($numbers, $weights)

// Other means of a list of numbers
$geometric_mean      = Average::geometricMean($numbers);
$harmonic_mean       = Average::harmonicMean($numbers);
$contraharmonic_mean = Average::contraharmonicMean($numbers);
$quadratic_mean      = Average::quadraticMean($numbers);  // same as rootMeanSquare
$root_mean_square    = Average::rootMeanSquare($numbers); // same as quadraticMean
$trimean             = Average::trimean($numbers);
$interquartile_mean  = Average::interquartileMean($numbers); // same as iqm
$interquartile_mean  = Average::iqm($numbers);               // same as interquartileMean
$cubic_mean          = Average::cubicMean($numbers);

// Truncated mean (trimmed mean)
$trim_percent   = 25;
$truncated_mean = Average::truncatedMean($numbers, $trim_percent);

// Generalized mean (power mean)
$p                = 2;
$generalized_mean = Average::generalizedMean($numbers, $p); // same as powerMean
$power_mean       = Average::powerMean($numbers, $p);       // same as generalizedMean

// Lehmer mean
$p           = 3;
$lehmer_mean = Average::lehmerMean($numbers, $p);

// Moving averages
$n       = 3;
$weights = [3, 2, 1];
$SMA     = Average::simpleMovingAverage($numbers, $n);             // 3 n-point moving average
$CMA     = Average::cumulativeMovingAverage($numbers);
$WMA     = Average::weightedMovingAverage($numbers, $n, $weights);
$EPA     = Average::exponentialMovingAverage($numbers, $n);

// Means of two numbers
list($x, $y) = [24, 6];
$agm           = Average::arithmeticGeometricMean($x, $y); // same as agm
$agm           = Average::agm($x, $y);                     // same as arithmeticGeometricMean
$log_mean      = Average::logarithmicMean($x, $y);
$heronian_mean = Average::heronianMean($x, $y);
$identric_mean = Average::identricMean($x, $y);

// Averages report
$averages = Average::describe($numbers);
print_r($averages);
/* Array (
 [mean] => 15
 [median] => 14
 [mode] => Array ( [0] => 13 )
 [geometric_mean] => 14.789726414533
 [harmonic_mean] => 14.605077399381
 [contraharmonic_mean] => 15.474074074074
 [quadratic_mean] => 15.235193176035
 [trimean] => 14.5
 [iqm] => 14
 [cubic_mean] => 15.492307432707
) */

Statistics – Circular

use MathPHP\Statistics\Circular;

$angles = [1.51269877, 1.07723915, 0.81992282];

$θ = Circular::mean($angles);
$R = Circular::resultantLength($angles);
$ρ = Circular::meanResultantLength($angles);
$V = Circular::variance($angles);
$ν = Circular::standardDeviation($angles);

// Descriptive circular statistics report
$stats = Circular::describe($angles);
print_r($stats);
/* Array (
 [n] => 3
 [mean] => 1.1354043006436
 [resultant_length] => 2.8786207547493
 [mean_resultant_length] => 0.9595402515831
 [variance] => 0.040459748416901
 [sd] => 0.28740568481722
); */

Statistics – Correlation

use MathPHP\Statistics\Correlation;

$X = [1, 2, 3, 4, 5];
$Y = [2, 3, 4, 4, 6];

// Covariance
$σxy = Correlation::covariance($X, $Y);  // Has optional parameter to set population (defaults to sample covariance)

// Weighted covariance
$w    = [2, 3, 1, 1, 5];
$σxyw = Correlation::weightedCovariance($X, $Y, $w);

// r - Pearson product-moment correlation coefficient (Pearson's r)
$r = Correlation::r($X, $Y);  // Has optional parameter to set population (defaults to sample correlation coefficient)

// Weighted correlation coefficient
$rw = Correlation::weightedCorrelationCoefficient($X, $Y, $w);

// R² - Coefficient of determination
$R² = Correlation::r2($X, $Y);  // Has optional parameter to set population (defaults to sample coefficient of determination)

// τ - Kendall rank correlation coefficient (Kendall's tau)
$τ = Correlation::kendallsTau($X, $Y);

// ρ - Spearman's rank correlation coefficient (Spearman's rho)
$ρ = Correlation::spearmansRho($X, $Y);

// Descriptive correlation report
$stats = Correlation::describe($X, $Y);
print_r($stats);
/* Array (
 [cov] => 2.25
 [r] => 0.95940322360025
 [r2] => 0.92045454545455
 [tau] => 0.94868329805051
 [rho] => 0.975
) */

// Confidence ellipse - create an ellipse surrounding the data at a specified standard deviation
$sd           = 1;
$num_points   = 11; // Optional argument specifying number of points of the ellipse
$ellipse_data = Correlation::confidenceEllipse($X, $Y, $sd, $num_points);

Statistics – Descriptive

use MathPHP\Statistics\Descriptive;

$numbers = [13, 18, 13, 14, 13, 16, 14, 21, 13];

// Range and midrange
$range    = Descriptive::range($numbers);
$midrange = Descriptive::midrange($numbers);

// Variance (population and sample)
$σ² = Descriptive::populationVariance($numbers); // n degrees of freedom
$S² = Descriptive::sampleVariance($numbers);     // n - 1 degrees of freedom

// Variance (Custom degrees of freedom)
$df = 5;                                    // degrees of freedom
$S² = Descriptive::variance($numbers, $df); // can specify custom degrees of freedom

// Weighted sample variance
$weights = [0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
$σ²w     = Descriptive::weightedSampleVariance($numbers, $weights, $biased = false);

// Standard deviation (For a sample; uses sample variance)
$σ = Descriptive::sd($numbers);                // same as standardDeviation;
$σ = Descriptive::standardDeviation($numbers); // same as sd;

// SD+ (Standard deviation for a population; uses population variance)
$SD+ = Descriptive::sd($numbers, Descriptive::POPULATION); // POPULATION constant = true
$SD+ = Descriptive::standardDeviation($numbers, true);     // same as sd with POPULATION constant

// Coefficient of variation (cᵥ)
$cᵥ = Descriptive::coefficientOfVariation($numbers);

// MAD - mean/median absolute deviations
$mean_mad   = Descriptive::meanAbsoluteDeviation($numbers);
$median_mad = Descriptive::medianAbsoluteDeviation($numbers);

// Quartiles (inclusive and exclusive methods)
// [0% => 13, Q1 => 13, Q2 => 14, Q3 => 17, 100% => 21, IQR => 4]
$quartiles = Descriptive::quartiles($numbers);          // Has optional parameter to specify method. Default is Exclusive
$quartiles = Descriptive::quartilesExclusive($numbers);
$quartiles = Descriptive::quartilesInclusive($numbers);

// IQR - Interquartile range
$IQR = Descriptive::interquartileRange($numbers); // Same as IQR; has optional parameter to specify quartile method.
$IQR = Descriptive::iqr($numbers);                // Same as interquartileRange; has optional parameter to specify quartile method.

// Percentiles
$twentieth_percentile    = Descriptive::percentile($numbers, 20);
$ninety_fifth_percentile = Descriptive::percentile($numbers, 95);

// Midhinge
$midhinge = Descriptive::midhinge($numbers);

// Describe a list of numbers - descriptive stats report
$stats = Descriptive::describe($numbers); // Has optional parameter to set population or sample calculations
print_r($stats);
/* Array (
 [n] => 9
 [min] => 13
 [max] => 21
 [mean] => 15
 [median] => 14
 [mode] => Array ( [0] => 13 )
 [range] => 8
 [midrange] => 17
 [variance] => 8
 [sd] => 2.8284271247462
 [cv] => 0.18856180831641
 [mean_mad] => 2.2222222222222
 [median_mad] => 1
 [quartiles] => Array (
 [0%] => 13
 [Q1] => 13
 [Q2] => 14
 [Q3] => 17
 [100%] => 21
 [IQR] => 4
 )
 [midhinge] => 15
 [skewness] => 1.4915533665654
 [ses] => 0.71713716560064
 [kurtosis] => 0.1728515625
 [sek] => 1.3997084244475
 [sem] => 0.94280904158206
 [ci_95] => Array (
 [ci] => 1.8478680091392
 [lower_bound] => 13.152131990861
 [upper_bound] => 16.847868009139
 )
 [ci_99] => Array (
 [ci] => 2.4285158135783
 [lower_bound] => 12.571484186422
 [upper_bound] => 17.428515813578
 )
) */

// Five number summary - five most important sample percentiles
$summary = Descriptive::fiveNumberSummary($numbers);
// [min, Q1, median, Q3, max]

Statistics – Distance and Divergence

use MathPHP\Statistics\Distance;

// Probability distributions
$p = [0.2, 0.5, 0.3];
$q = [0.1, 0.4, 0.5];

// Distances
$DB⟮p、q⟯ = Distance::bhattacharyyaDistance($p, $q);
$H⟮p、q⟯  = Distance::hellingerDistance($p, $q)

// Divergences
$Dkl⟮P‖Q⟯ = Distance::kullbackLeiblerDivergence($p, $q);
$JSD⟮P‖Q⟯ = Distance::jensenShannonDivergence($p, $q);

Statistics – Distributions

use MathPHP\Statistics\Distribution;

$grades = ['A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'D', 'F'];

// Frequency distributions (frequency and relative frequency)
$frequencies          = Distribution::frequency($grades);         // [ A => 2, B => 4, C => 2, D => 1, F => 1 ]
$relative_frequencies = Distribution::relativeFrequency($grades); // [ A => 0.2, B => 0.4, C => 0.2, D => 0.1, F => 0.1 ]

// Cumulative frequency distributions (cumulative and cumulative relative)
$cumulative_frequencies          = Distribution::cumulativeFrequency($grades);         // [ A => 2, B => 6, C => 8, D => 9, F => 10 ]
$cumulative_relative_frequencies = Distribution::cumulativeRelativeFrequency($grades); // [ A => 0.2, B => 0.6, C => 0.8, D => 0.9, F => 1 ]

// Stem and leaf plot
// Return value is array where keys are the stems, values are the leaves
$values             = [44, 46, 47, 49, 63, 64, 66, 68, 68, 72, 72, 75, 76, 81, 84, 88, 106];
$stem_and_leaf_plot = Distribution::stemAndLeafPlot($values);
// [4 => [4, 6, 7, 9], 5 => [], 6 => [3, 4, 6, 8, 8], 7 => [2, 2, 5, 6], 8 => [1, 4, 8], 9 => [], 10 => [6]]

// Optional second parameter will print stem and leaf plot to STDOUT
Distribution::stemAndLeafPlot($values, Distribution::PRINT);
/*
 4 | 4 6 7 9
 5 |
 6 | 3 4 6 8 8
 7 | 2 2 5 6
 8 | 1 4 8
 9 |
10 | 6
*/

Statistics – Effect Size

use MathPHP\Statistics\EffectSize;

$SSt = 24;  // Sum of squares treatment
$SSE = 300; // Sum of squares error
$SST = 600; // Sum of squares total
$dft = 1;   // Degrees of freedom treatment
$MSE = 18;  // Mean squares error

// η² - Eta-squared
$η²  = EffectSize::etaSquared($SSt, $SST);
$η²p = EffectSize::partialEtaSquared($SSt, $SSE);

// ω² - Omega-squared
$ω² = EffectSize::omegaSquared($SSt, $dft, $SST, $MSE);

// Cohen's ƒ²
$ƒ² = EffectSize::cohensF($η²);
$ƒ² = EffectSize::cohensF($ω²);
$ƒ² = EffectSize::cohensF($R²);

// Cohen's q
list($r₁, $r₂) = [0.1, 0.2];
$q = EffectSize::cohensQ($r₁, $r₂);

// Cohen's d
list($μ₁, $σ₁) = [6.7, 1.2];
list($μ₂, $σ₂) = [6, 1];
$d = EffectSize::cohensD($μ₁, $μ₂, $σ₁, $σ₂);

// Hedges' g
list($μ₁, $σ₁, $n₁) = [6.7, 1.2, 15];
list($μ₂, $σ₂, $n₂) = [6, 1, 15];
$g = EffectSize::hedgesG($μ₁, $μ₂, $σ₁, $σ₂, $n₁, $n₂);

// Glass' Δ
$Δ = EffectSize::glassDelta($μ₁, $μ₂, $σ₂);

Statistics – Experiments

use MathPHP\Statistics\Experiment;

$a = 28;   // Exposed and event present
$b = 129;  // Exposed and event absent
$c = 4;    // Non-exposed and event present
$d = 133;  // Non-exposed and event absent

// Risk ratio (relative risk) - RR
$RR = Experiment::riskRatio($a, $b, $c, $d);
// ['RR' => 6.1083, 'ci_lower_bound' => 2.1976, 'ci_upper_bound' => 16.9784, 'p' => 0.0005]

// Odds ratio (OR)
$OR = Experiment::oddsRatio($a, $b, $c, $d);
// ['OR' => 7.2171, 'ci_lower_bound' => 2.4624, 'ci_upper_bound' => 21.1522, 'p' => 0.0003]

// Likelihood ratios (positive and negative)
$LL = Experiment::likelihoodRatio($a, $b, $c, $d);
// ['LL+' => 7.4444, 'LL-' => 0.3626]

$sensitivity = 0.67;
$specificity = 0.91;
$LL          = Experiment::likelihoodRatioSS($sensitivity, $specificity);

Statistics – Kernel Density Estimation

use MathPHP\Statistics\KernelDensityEstimation

$data = [-2.76, -1.09, -0.5, -0.15, 0.22, 0.69, 1.34, 1.75];
$x    = 0.5;

// Density estimator with default bandwidth (normal distribution approximation) and kernel function (standard normal)
$kde     = new KernelDensityEstimation($data);
$density = $kde->evaluate($x)

// Custom bandwidth
$h = 0.1;
$kde->setBandwidth($h);

// Library of built-in kernel functions
$kde->setKernelFunction(KernelDensityEstimation::STANDARD_NORMAL);
$kde->setKernelFunction(KernelDensityEstimation::NORMAL);
$kde->setKernelFunction(KernelDensityEstimation::UNIFORM);
$kde->setKernelFunction(KernelDensityEstimation::TRIANGULAR);
$kde->setKernelFunction(KernelDensityEstimation::EPANECHNIKOV);
$kde->setKernelFunction(KernelDensityEstimation::TRICUBE);

// Set custom kernel function (user-provided callable)
$kernel = function ($x) {
  if (abs($x) > 1) {
      return 0;
  } else {
      return 70 / 81 * ((1 - abs($x) ** 3) ** 3);
  }
};
$kde->setKernelFunction($kernel);

// All customization optionally can be done in the constructor
$kde = new KernelDesnsityEstimation($data, $h, $kernel);

Statistics – Random Variables

use MathPHP\Statistics\RandomVariable;

$X = [1, 2, 3, 4];
$Y = [2, 3, 4, 5];

// Central moment (nth moment)
$second_central_moment = RandomVariable::centralMoment($X, 2);
$third_central_moment  = RandomVariable::centralMoment($X, 3);

// Skewness (population and sample)
$skewness = RandomVariable::skewness($X);            // general method of calculating skewness
$skewness = RandomVariable::populationSkewness($X);  // similar to Excel's SKEW.P
$skewness = RandomVariable::sampleSkewness($X);      // similar to Excel's SKEW
$SES      = RandomVariable::ses(count($X));          // standard error of skewness

// Kurtosis (excess)
$kurtosis    = RandomVariable::kurtosis($X);
$platykurtic = RandomVariable::isPlatykurtic($X); // true if kurtosis is less than zero
$leptokurtic = RandomVariable::isLeptokurtic($X); // true if kurtosis is greater than zero
$mesokurtic  = RandomVariable::isMesokurtic($X);  // true if kurtosis is zero
$SEK         = RandomVariable::sek(count($X));    // standard error of kurtosis

// Standard error of the mean (SEM)
$sem = RandomVariable::standardErrorOfTheMean($X); // same as sem
$sem = RandomVariable::sem($X);                    // same as standardErrorOfTheMean

// Confidence interval
$μ  = 90; // sample mean
$n  = 9;  // sample size
$σ  = 36; // standard deviation
$cl = 99; // confidence level
$ci = RandomVariable::confidenceInterval($μ, $n, $σ, $cl); // Array( [ci] => 30.91, [lower_bound] => 59.09, [upper_bound] => 120.91 )

Statistics – Regressions

use MathPHP\Statistics\Regression;

$points = [[1,2], [2,3], [4,5], [5,7], [6,8]];

// Simple linear regression (least squares method)
$regression = new Regression\Linear($points);
$parameters = $regression->getParameters();          // [m => 1.2209302325581, b => 0.6046511627907]
$equation   = $regression->getEquation();            // y = 1.2209302325581x + 0.6046511627907
$y          = $regression->evaluate(5);              // Evaluate for y at x = 5 using regression equation
$ci         = $regression->ci(5, 0.5);               // Confidence interval for x = 5 with p-value of 0.5
$pi         = $regression->pi(5, 0.5);               // Prediction interval for x = 5 with p-value of 0.5; Optional number of trials parameter.
$Ŷ          = $regression->yHat();
$r          = $regression->r();                      // same as correlationCoefficient
$r²         = $regression->r2();                     // same as coefficientOfDetermination
$se         = $regression->standardErrors();         // [m => se(m), b => se(b)]
$t          = $regression->tValues();                // [m => t, b => t]
$p          = $regression->tProbability();           // [m => p, b => p]
$F          = $regression->fStatistic();
$p          = $regression->fProbability();
$h          = $regression->leverages();
$e          = $regression->residuals();
$D          = $regression->cooksD();
$DFFITS     = $regression->dffits();
$SStot      = $regression->sumOfSquaresTotal();
$SSreg      = $regression->sumOfSquaresRegression();
$SSres      = $regression->sumOfSquaresResidual();
$MSR        = $regression->meanSquareRegression();
$MSE        = $regression->meanSquareResidual();
$MSTO       = $regression->meanSquareTotal();
$error      = $regression->errorSd();                // Standard error of the residuals
$V          = $regression->regressionVariance();
$n          = $regression->getSampleSize();          // 5
$points     = $regression->getPoints();              // [[1,2], [2,3], [4,5], [5,7], [6,8]]
$xs         = $regression->getXs();                  // [1, 2, 4, 5, 6]
$ys         = $regression->getYs();                  // [2, 3, 5, 7, 8]
$ν          = $regression->degreesOfFreedom();

// Linear regression through a fixed point (least squares method)
$force_point = [0,0];
$regression  = new Regression\LinearThroughPoint($points, $force_point);
$parameters  = $regression->getParameters();
$equation    = $regression->getEquation();
$y           = $regression->evaluate(5);
$Ŷ           = $regression->yHat();
$r           = $regression->r();
$r²          = $regression->r2();
 ⋮                     ⋮

// Theil–Sen estimator (Sen's slope estimator, Kendall–Theil robust line)
$regression  = new Regression\TheilSen($points);
$parameters  = $regression->getParameters();
$equation    = $regression->getEquation();
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Use Lineweaver-Burk linearization to fit data to the Michaelis–Menten model: y = (V * x) / (K + x)
$regression  = new Regression\LineweaverBurk($points);
$parameters  = $regression->getParameters();  // [V, K]
$equation    = $regression->getEquation();    // y = Vx / (K + x)
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Use Hanes-Woolf linearization to fit data to the Michaelis–Menten model: y = (V * x) / (K + x)
$regression  = new Regression\HanesWoolf($points);
$parameters  = $regression->getParameters();  // [V, K]
$equation    = $regression->getEquation();    // y = Vx / (K + x)
$y           = $regression->evaluate(5);
 ⋮                     ⋮

// Power law regression - power curve (least squares fitting)
$regression = new Regression\PowerLaw($points);
$parameters = $regression->getParameters();   // [a => 56.483375436574, b => 0.26415375648621]
$equation   = $regression->getEquation();     // y = 56.483375436574x^0.26415375648621
$y          = $regression->evaluate(5);
 ⋮                     ⋮

// LOESS - Locally Weighted Scatterplot Smoothing (Local regression)
$α          = 1/3;                         // Smoothness parameter
$λ          = 1;                           // Order of the polynomial fit
$regression = new Regression\LOESS($points, $α, $λ);
$y          = $regression->evaluate(5);
$Ŷ          = $regression->yHat();
 ⋮                     ⋮

Statistics – Significance Testing

use MathPHP\Statistics\Significance;

// Z test - One sample (z and p values)
$Hₐ = 20;   // Alternate hypothesis (M Sample mean)
$n  = 200;  // Sample size
$H₀ = 19.2; // Null hypothesis (μ Population mean)
$σ  = 6;    // SD of population (Standard error of the mean)
$z  = Significance:zTest($Hₐ, $n, $H₀, $σ);           // Same as zTestOneSample
$z  = Significance:zTestOneSample($Hₐ, $n, $H₀, $σ);  // Same as zTest
/* [
 'z' => 1.88562, // Z score
 'p1' => 0.02938, // one-tailed p value
 'p2' => 0.0593, // two-tailed p value
] */

// Z test - Two samples (z and p values)
$μ₁ = 27;   // Sample mean of population 1
$μ₂ = 33;   // Sample mean of population 2
$n₁ = 75;   // Sample size of population 1
$n₂ = 50;   // Sample size of population 2
$σ₁ = 14.1; // Standard deviation of sample mean 1
$σ₂ = 9.5;  // Standard deviation of sample mean 2
$z  = Significance::zTestTwoSample($μ₁, $μ₂, $n₁, $n₂, $σ₁, $σ₂);
/* [
 'z' => -2.36868418147285, // z score
 'p1' => 0.00893, // one-tailed p value
 'p2' => 0.0179, // two-tailed p value
] */

// Z score
$M = 8; // Sample mean
$μ = 7; // Population mean
$σ = 1; // Population SD
$z = Significance::zScore($M, $μ, $σ);

// T test - One sample (from sample data)
$a     = [3, 4, 4, 5, 5, 5, 6, 6, 7, 8]; // Data set
$H₀    = 300;                            // Null hypothesis (μ₀ Population mean)
$tTest = Significance::tTest($a, $H₀)
print_r($tTest);
/* Array (
 [t] => 0.42320736951516 // t score
 [df] => 9 // degrees of freedom
 [p1] => 0.34103867713806 // one-tailed p value
 [p2] => 0.68207735427613 // two-tailed p value
 [mean] => 5.3 // sample mean
 [sd] => 1.4944341180973 // standard deviation
) */

// T test - One sample (from summary data)
$Hₐ    = 280; // Alternate hypothesis (M Sample mean)
$s     = 50;  // Standard deviation of sample
$n     = 15;  // Sample size
$H₀    = 300; // Null hypothesis (μ₀ Population mean)
$tTest = Significance::tTestOneSampleFromSummaryData($Hₐ, $s, $n, $H₀);
print_r($tTest);
/* Array (
 [t] => -1.549193338483 // t score
 [df] => 14 // degreees of freedom
 [p1] => 0.071820000122611 // one-tailed p value
 [p2] => 0.14364000024522 // two-tailed p value
 [mean] => 280 // sample mean
 [sd] => 50 // standard deviation
) */

// T test - Two samples (from sample data)
$x₁    = [27.5, 21.0, 19.0, 23.6, 17.0, 17.9, 16.9, 20.1, 21.9, 22.6, 23.1, 19.6, 19.0, 21.7, 21.4];
$x₂    = [27.1, 22.0, 20.8, 23.4, 23.4, 23.5, 25.8, 22.0, 24.8, 20.2, 21.9, 22.1, 22.9, 20.5, 24.4];
$tTest = Significance::tTest($x₁, $x₂);
print_r($tTest);
/* Array (
 [t] => -2.4553600286929 // t score
 [df] => 24.988527070145 // degrees of freedom
 [p1] => 0.010688914613979 // one-tailed p value
 [p2] => 0.021377829227958 // two-tailed p value
 [mean1] => 20.82 // mean of sample x₁
 [mean2] => 22.98667 // mean of sample x₂
 [sd1] => 2.804894 // standard deviation of x₁
 [sd2] => 1.952605 // standard deviation of x₂
) */

// T test - Two samples (from summary data)
$μ₁    = 42.14; // Sample mean of population 1
$μ₂    = 43.23; // Sample mean of population 2
$n₁    = 10;    // Sample size of population 1
$n₂    = 10;    // Sample size of population 2
$σ₁    = 0.683; // Standard deviation of sample mean 1
$σ₂    = 0.750; // Standard deviation of sample mean 2
$tTest = Significance::tTestTwoSampleFromSummaryData($μ₁, $μ₂, $n₁, $n₂, $σ₁, $σ₂);
print_r($tTest);
/* Array (
 [t] => -3.3972305988708 // t score
 [df] => 17.847298548027 // degrees of freedom
 [p1] => 0.0016211251126198 // one-tailed p value
 [p2] => 0.0032422502252396 // two-tailed p value
 [mean1] => 42.14
 [mean2] => 43.23
 [sd1] => 0.6834553
 [sd2] => 0.7498889
] */

// T score
$Hₐ = 280; // Alternate hypothesis (M Sample mean)
$s  = 50;  // SD of sample
$n  = 15;  // Sample size
$H₀ = 300; // Null hypothesis (μ₀ Population mean)
$t  = Significance::tScore($Hₐ, $s, $n, $H);

// χ² test (chi-squared goodness of fit test)
$observed = [4, 6, 17, 16, 8, 9];
$expected = [10, 10, 10, 10, 10, 10];
$χ²       = Significance::chiSquaredTest($observed, $expected);
// ['chi-square' => 14.2, 'p' => 0.014388]

Trigonometry

use MathPHP\Trigonometry;

$n      = 9;
$points = Trigonometry::unitCircle($n); // Produce n number of points along the unit circle

Unit Tests

Beyond 100% code coverage!

MathPHP has thousands of unit tests testing individual functions directly with numerous data inputs to achieve 100% test coverage. MathPHP unit tests also test mathematical axioms which indirectly test the same functions in multiple different ways ensuring that those math properties all work out according to the axioms.

$ cd tests
$ phpunit
Coverage Status
Build Status

Standards

MathPHP conforms to the following standards:

License

MathPHP is licensed under the MIT License.

EasyTask简单易用的PHP常驻内存定时器

  EasyTask是PHP常驻内存定时器Composer包,定位与Javascript的setInterval定时器效果一致,您可以用它来完成需要重复运行的任务(如订单超时自动取消,短信邮件异步推送,队列/消费者/频道订阅者等等),甚至处理Crontab计划任务(如每天凌晨1点-3点同步DB数据,每月1号生成月度统一报表,每晚10点重启nginx服务器等等);内置任务异常上报功能,异常错误您都可以自定义处理(例如实现异常错误自动短信邮件通知);还支持任务异常退出自动重启功能,让您的任务运行更稳定 ,工具包同时支持windows、linux、mac环境运行。

运行环境

Composer安装

  composer require easy-task/easy-task

【一】. 快速入门->创建任务
//初始化
$task = new Task();

// 设置非常驻内存
$task->setDaemon(false);

// 设置项目名称
$task->setPrefix('EasyTask');

// 设置记录运行时目录(日志或缓存目录)
$task->setRunTimePath('./Application/Runtime/');

// 1.添加闭包函数类型定时任务(开启2个进程,每隔10秒执行1次你写闭包方法中的代码)
$task->addFunc(function () {
    $url = 'https://www.gaojiufeng.cn/?id=243';
    @file_get_contents($url);
}, 'request', 10, 2);

// 2.添加类的方法类型定时任务(同时支持静态方法)(开启1个进程,每隔20秒执行一次你设置的类的方法)
$task->addClass(Sms::class, 'send', 'sendsms', 20, 1);

// 3.添加指令类型的定时任务(开启1个进程,每隔10秒执行1次)
$command = 'php /www/web/orderAutoCancel.php';
$task->addCommand($command,'orderCancel',10,1);

// 4.添加闭包函数任务,不需要定时器,立即执行(开启1个进程)
$task->addFunc(function () {
    while(true)
    {
       //todo
    }
}, 'request', 0, 1);

// 5.每晚9点半通过curl命令访问网站
$task->addCommand('curl https://www.gaojiufeng.cn', 'curl', '30 21 * * *', 1);

// 启动任务
$task->start();

【二】. 快速入门->连贯操作
$task = new Task();

// 设置常驻内存
$task->setDaemon(true)   

// 设置项目名称
->setPrefix('ThinkTask')   

// 设置系统时区
->setTimeZone('Asia/Shanghai')  

// 设置子进程挂掉自动重启
->setAutoRecover(true)  

// 设置PHP运行路径,一般Window系统才需要设置,当系统无法找到才需要您手动设置
->setPhpPath('C:/phpEnv/php/php-7.0/php.exe')

/**
 * 设置运行时目录(日志或缓存目录)
 */
->setRunTimePath('./Application/Runtime/')

/**
 * 关闭EasyTask的异常注册
 * EasyTask将不再监听set_error_handler/set_exception_handler/register_shutdown_function事件
 */
->setCloseErrorRegister(true)

/**
 * 设置接收运行中的错误或者异常(方式1)
 * 您可以自定义处理异常信息,例如将它们发送到您的邮件中,短信中,作为预警处理
 * (不推荐的写法,除非您的代码健壮)
 */
->setErrorRegisterNotify(function ($ex) {
    //获取错误信息|错误行|错误文件
    $message = $ex->getMessage();
    $file = $ex->getFile();
    $line = $ex->getLine();
})

/**
 * 设置接收运行中的错误或者异常的Http地址(方式2)
 * Easy_Task会POST通知这个url并传递以下参数:
 * errStr:错误信息
 * errFile:错误文件
 * errLine:错误行
 * 您的Url收到POST请求可以编写代码发送邮件或短信通知您
 * (推荐的写法)
 */
->setErrorRegisterNotify('https://www.gaojiufeng.cn/rev.php')

// 添加任务定时执行闭包函数
->addFunc(function () {
    echo 'Success3' . PHP_EOL;
}, 'fucn', 20, 1)   

// 添加任务定时执行类的方法
->addClass(Sms::class, 'send', 'sendsms1', 20, 1)   

// 添加任务定时执行命令
->addCommand('php /www/wwwroot/learn/curl.php','cmd',6,1)

// 启动任务
->start();

【三】. 快速入门->命令整合
// 获取命令
$force = empty($_SERVER['argv']['2']) ? '' : $_SERVER['argv']['2'];
$command = empty($_SERVER['argv']['1']) ? '' : $_SERVER['argv']['1'];

// 配置任务
$task = new Task();
$task->setRunTimePath('./Application/Runtime/');
$task->addFunc(function () {
        $url = 'https://www.gaojiufeng.cn/?id=271';
        @file_get_contents($url);
    }, 'request', 10, 2);;

// 根据命令执行
if ($command == 'start')
{
    $task->start();
}
elseif ($command == 'status')
{
    $task->status();
}
elseif ($command == 'stop')
{
    $force = ($force == 'force'); //是否强制停止
    $task->stop($force);
}
else
{
    exit('Command is not exist');
}

启动任务: php console.php start
查询任务: php console.php status
普通关闭: php console.php stop
强制关闭: php console.php stop force

【四】. 快速入门->认识输出信息
┌─────┬──────────────┬─────────────────────┬───────┬────────┬──────┐
│ pid │ name         │ started             │ time │ status │ ppid │
├─────┼──────────────┼─────────────────────┼───────┼────────┼──────┤
│ 32  │ Task_request │ 2020-01-10 15:55:44 │ 10    │ active │ 31   │
│ 33  │ Task_request │ 2020-01-10 15:55:44 │ 10    │ active │ 31   │
└─────┴──────────────┴─────────────────────┴───────┴────────┴──────┘
参数:
pid:任务进程id
name:任务别名
started:任务启动时间
time:任务执行时间
status:任务状态
ppid:守护进程id

【五】. 进阶了解->建议阅读
(1). 建议您使用绝对路径进行开发,是标准更是规范
(2). 禁止在任务中使用exit/die语法,否则导致整个进程退出
(3). Windows安装Wpc扩展时请关闭杀毒软件,避免误报
(4). Windows建议开启popen,pclose方法,会自动尝试帮您解决CMD输出中文乱码问题,请尽量使用CMD管理员方式运行
(5). Windows命令行不支持utf8国际标准编码,可切换git_bash来运行,解决乱码问题
(6). Windows提示Failed to create COM object `Wpc.Core': 无效的语法,请按照文档安装Wpc扩展
(7). Windows提示com() has been disabled for security reasons,请在php.ini中删除disable_classes = com配置项目
(8). 日志文件在运行时目录的Log目录下,标出输入输出异常文件在运行时目录Std目录下
(9). 普通停止任务,任务会在执行成功后开始安全退出,强制停止任务直接退出任务,可能正在执行就强制退出
(10). 开发遵守先同步启动测试正常运行无任何报错再设置异步运行,有问题查看日志文件或者标准输入输出异常文件,或者上QQ群反馈

【六】. 进阶了解->框架集成教程

  -> thinkphp3.2.x教程.

  -> thinkPhp5.x.x教程.

  -> thinkPhp6.x.x教程.

  -> laravelPhp6.x.x教程.

【七】. 进阶了解->推荐操作
(1).推荐使用7.1以上版本的PHP,支持异步信号,不依赖ticks
(2).推荐安装php_event扩展基于事件轮询的毫秒级定时支持

【八】. 进阶了解->时间参数支持crontab命令
 (1).特殊表达式:
    @yearly                    每年运行一次 等同于(0 0 1 1 *) 
    @annually                  每年运行一次 等同于(0 0 1 1 *)
    @monthly                   每月运行一次 等同于(0 0 1 * *) 
    @weekly                    每周运行一次 等同于(0 0 * * 0) 
    @daily                     每日运行一次 等同于(0 0 * * *) 
    @hourly                    每小时运行一次 等同于(0 * * * *)
 (2).标准表达式:
    '30 21 * * *'              每天晚上21:30执行一次
    '0 23 * * 6'               每周星期六的晚上23:00执行一次
    '3,15 * * * *'             每小时的第3分钟和第15分钟执行一次
    '45 4 1,10,22 * *'         每月的1/10/22日的04:45执行一次
    '3,15 8-11 * * *'          每天上午8点到11点的第3分钟和第15分钟执行一次
    其他指令请自己测试
   使用example/build_cron_date.php生成执行时间列表来检查自己的命令是否符合预期

PHP Ajax 跨域问题最佳解决方案

本文通过设置Access-Control-Allow-Origin来实现跨域。

例如:客户端的域名是client.runoob.com,而请求的域名是server.runoob.com。

如果直接使用ajax访问,会有以下错误:

XMLHttpRequest cannot load http://server.runoob.com/server.php. No 'Access-Control-Allow-Origin' header is present on the requested resource.Origin 'http://client.runoob.com' is therefore not allowed access.

1、允许单个域名访问

指定某域名(http://client.runoob.com)跨域访问,则只需在http://server.runoob.com/server.php文件头部添加如下代码:

header('Access-Control-Allow-Origin:http://client.runoob.com');

2、允许多个域名访问

指定多个域名(http://client1.runoob.com、http://client2.runoob.com等)跨域访问,则只需在http://server.runoob.com/server.php文件头部添加如下代码:

$origin = isset($_SERVER['HTTP_ORIGIN'])? $_SERVER['HTTP_ORIGIN'] : '';  
  
$allow_origin = array(  
    'http://client1.runoob.com',  
    'http://client2.runoob.com'  
);  
  
if(in_array($origin, $allow_origin)){  
    header('Access-Control-Allow-Origin:'.$origin);       
} 

3、允许所有域名访问

允许所有域名访问则只需在http://server.runoob.com/server.php文件头部添加如下代码:

header('Access-Control-Allow-Origin:*'); 

php去除换行(回车换行)的三种方法


<?php   
 //php 不同系统的换行  
//不同系统之间换行的实现是不一样的  
//linux 与unix中用 \n  
//MAC 用 \r  
//window 为了体现与linux不同 则是 \r\n  
//所以在不同平台上 实现方法就不一样  
//php 有三种方法来解决  

//1、使用str_replace 来替换换行  
$str = str_replace(array("\r\n", "\r", "\n"), "", $str);   

//2、使用正则替换  
$str = preg_replace('//s*/', '', $str);  

//3、使用php定义好的变量 (建议使用)  
$str = str_replace(PHP_EOL, '', $str);   
?>  

Markdown image 替换为 html标签

使用Typora可以实现公式的预览,图片自动上传到服务器,但图片是markdown语法,这里实现从Markdown 转化为 Html的 img标签

public static function imageReplace($content)
{

	$pattern = ['/!\[img\]\((.*)\)/U','/<p>\s*<\/p>/U'];

	$replacement = ['<img src="\\1" \/>','']; 

	return preg_replace($pattern, $replacement, $content);

}

实现键盘相关操作

想要实现在写作时作用Enter来提交,作用Ctrl+S保存

    document.onkeydown=keyDownSearch;
   
    function keyDownSearch(e) { 
        // 兼容FF和IE和Opera 
        var theEvent = e || window.event; 
        var code = theEvent.keyCode || theEvent.which || theEvent.charCode; 
        if (code == 13) {  
            $("#todo-btn").trigger('click');
            return false; 
        } 
        return true; 
    }

解决动态ajax/pjax加载mathjax不生效问题

<!DOCTYPE html>
<html>
<head>
<title>MathJax TeX Test Page</title>
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript" async
  src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML">
</script>
</head>
<body>
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
</body>
</html>

只要引入mathjax的js地址,配置config,就能自动识别文章中的数学公式写法。显示效果如下:

正常情况下使用,是可以实现显示数学公式的,但是如果你的页面使用了动态加载,即ajax或pjax的情况下,mathjax就不能顺利的渲染出数学公式了。

咳咳,解决动态适配的事情也不是一次两次了,添加事件可以用jquery的on方法委托。在动态调用后执行可以在$.ajax的success方法后执行相关业务逻辑。 pjax则在complete或end后执行相关业务逻辑代码。这里我拿pjax做演示,代码类似下面:

$(document).pjax('a[target!=_top]', '#page', {
    fragment: '#page',
    timeout: 8000,
}).on('pjax:send', function () {
    do something
}).on('pjax:complete', function () {
    $.getScript("//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-MML-AM_CHTML", function() {
        MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
    });
});

想法是在pjax加载complete之后加载mathjax的js依赖,在配置config,因为之前正常使用也是这样的。但是很遗憾,还是没有正常显示。

后来锲而不舍的找到了MathJax.Hub.Typeset()这个方法,结合Queue方法就能实现(不要问我为啥是中文文档,谷歌翻译了解下)

....
.on('pjax:complete', function () {
    $.getScript("//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-MML-AM_CHTML", function() {
        MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
        // entry-content是文章页的内容div的class
        var math = document.getElementsByClassName("entry-content")[0];
        MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
    });
});

Katex使用记录

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.15.1/dist/katex.min.css" integrity="sha384-R4558gYOUz8mP9YWpZJjofhk+zx0AS11p36HnD2ZKj/6JR5z27gSSULCNHIRReVs" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.15.1/dist/katex.min.js" integrity="sha384-z1fJDqw8ZApjGO3/unPWUPsIymfsJmyrDVWC8Tv/a1HeOtGmkwNd/7xUS0Xcnvsx" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.15.1/dist/contrib/auto-render.min.js" integrity="sha384-+XBljXPPiv+OzfbB3cVmLHf4hdUFHlWNZN5spNQ7rmHTXpd7WvJum6fIACpNNfIR" crossorigin="anonymous"></script>
<script>
    document.addEventListener("DOMContentLoaded", function() {
        renderMathInElement(document.getElementById('test'), {
          // customised options
          // • auto-render specific keys, e.g.:
          delimiters: [
              {left: '$$', right: '$$', display: true},
              {left: '$', right: '$', display: false},
              {left: '\\(', right: '\\)', display: false},
              {left: '\\[', right: '\\]', display: true}
          ],
          // • rendering keys, e.g.:
          throwOnError : false
        });
    });
</script>

以上代码可以实现公式的渲染,但不能在Ajax加载时渲染,在使用Ajax加载时去除DOMContentLoaded监听即可

清除指定Html标签

/**
 * 删除指定标签
 * @param array  $tags    删除的标签
 * @param string $str     html字符串
 * @param bool   $type    是否保留标签的内容
 * @return mixed
 * @usage
 *  $str = 'Hello</p><p><img src="http://www.baidu.com" /></b><Video>';
 *
 *      // echo strip_tags($str, '<img');
 *      echo $this->stripHtmlTags(array('b','p'),$str,true);
 */
public static function stripHtmlTags($str,$tags=['p','b'], $content=true)
{
    $html = [];
    if($content){
        foreach ($tags as $tag) {
            $html[] = "/(<(?:\/" .$tag. "|" .$tag. ")[^>]*>)/is";
        }
    }else{
        foreach ($tags as $tag) {
            $html[] = '/<' .$tag. '.*?>[\s|\S]*?<\/' .$tag. '>/is';
            $html[] = '/<' .$tag. '.*?>/is';
        }
    }
    $data = preg_replace($html, '', $str);
    return $data;
}